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Lecture 24: Non-Markovian Diffusion Equations 

Scribe: Yuxing Ben (and Martin Z. Bazant) 

Department of Mathematics, MIT 

May 5, 2005 

This lecture concerns separable CTRW, normal diffusion equation for finite mean waiting time 
and finite step variance, exponential relaxation of Fourier modes, fractional diffusion equations for 
sub-diffusion, Mittag-Leffler power-law relaxation of Fourier modes, and Riemann-Liouville frac­
tional derivative. 

1 Separable CTRW(Continuous Random Walk) 

Consider the sum of random variables xn with random waiting time τn, where xn and τn are 
independent variables: 

N (t)

X(t) = 
� 

xn (1) 
n=1 

Here, the upper limit of sum N(t) is a random function of continuous time. 
We define: 

ψ(t) = PDF for τn(IID) (2) 
p(x) = PDF for xn(IID) 

P (x, t) = PDF for X(t) 

Recall that the Montroll-Weiss equation is 

˜
� 

1 − ψ (s) 
� 

1 
p̂ (k, s) = (3)�

s 1 − ψ̃ (s) p̂ (k) 

As k → 0, s → 0, one can get moments of X(t). We seek what kind of continuum equations for 
p(x, t) are. Note that in this lecture, < x >= 0 by assumption, or in the other word, there is no 
drift. 

2 Normal Diffusion 

Now we consider the continuum limit of the continuous time random walk with normal diffusive 
scaling when CLT (central limit theory) holds. We assume that < τ >= τ < ∞, σ2 < ∞, and ¯

x(t)�Δx = 0, define z(t) = 
σ
√

N (t) 
, then φ(z) = exp(−z2/2) , where N(t) = t/τ̄ .√

2π 

1 
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The walker is assumed to have a finite mean waiting time, so the waiting-time distribution 
satisfies 

ψ (t) = o 
�
t−2

� 
, 

and thus its Laplace transform will have a small s-expansion governed by 

ψ̃ (s) ∼ 1 − τ̄ s, s 0,→ 

and 
σ2k2 

ˆ , k 0.p (k) ∼ 1 − 
2 

→


Substituting into Eq.(3), we have the long-time limit


τ̄ 1 
p̂ (k, s) ∼ 

¯
�

τs + σ
2 k2 + 

∼ 
s + Dk2 , 

2 · · · 

where 
σ2 

D = .
2τ̄ 

The definition of Laplace transform is �p̂ (k, s) = 
�
0
∞

e−stp̂(k, t)dt. Inverting Laplace Transform 
leads to 

p̂(k, t) ∼ e−Dk2t = e−t/t(k) 

1where t(k) = 
Dk2 , and is the exponential relaxation time for Fourier mode k. Note that large k 

decays fast. As a result, p (x, t) approaches the solution of the normal diffusion equation, 

p (x, t) ∼ 
e−x2/4Dt 
√

4πDt 

(This is again the central limit theorem for CTRW.) Since the equation as t → ∞ and x = O 
�√

t
�
. 

is linear, the same continuum limit holds for any initial condition of the CTRW. 
Note


X(t) X X(t)

z(t) = √

2Dt 
= �

σ2t/τ̄
= 

N(t) 

To compare ˆ p(k, t) satisfies ODE p(k, t) and P (x, t): 1) ̂

∂p̂
= −

t(
p̂

k) 
with initial condition p̂(k, 0) = 1; 

∂t 

2)P (x, t) satisfies PDE 
∂P ∂2P 

= D 
∂x2 , P (x, 0) = δ(x). 

∂t 

3 Super Diffusion 

Assume τ̄ is finite < ∞, but σ2 = ∞ and symmetric p(−x) = p(x) (This is Levy flight). For 
k α

example: p(̂k) = e−a| | (0 < α < 2), p(x) = �α,a(x). 
Consider 

ψ̃(s) ∼ 1 − τ̄ s, s 0→ 



� 
� 

�
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ˆ |k| α, k → 0p(k) ∼ 1 − B

Using Eq.(3), we obtain 
τ̄

p̂ (k, s) ∼ 
¯

�
τs + B|k|α + · · · 

Invert Laplace Transform 
τ 

To summarize, we still have exponential relaxation of Fourier modes in time, but now 

t(k) = 
α , α < 2. 

B k| |
So large k (or small wavelength) features decay more slowly compared to normal diffusion, but 
small k decay faster. Still 

∂p̂
= 

p̂

∂t 
− 

t(k) 
ODE 

∂p̂
= 

B − 
τ̄
|k α p̂

∂t 
|

B 
¯

τ̄ 

k αt = e−t/t(k)|p̂(k, t) ∼ e− |

Let κ(t) = k( Bt 
τ )


1 
α 

α
p̂ ∼ e−|k(t) , then
x |z = , 

τ 
Bt (
¯

1 
α

↔ 
) 

�� τ̄
1 
ατ̄ x

)
1 
�α α,1P (x, t) ∼ (
 1 

αBt B t 

with scales like tν , where ν = 1/α > 1 
2 , the supper diffusion.


Note P (x, t) satisfies a fractional diffusion equation


∂P B
= ( 

τ̄
|�| αP )

∂t 

where �α is the Riese fractional derivative which can be defined by: 

|�|αf(k) = −|k|αf̂(k) 
� 

dk |�|αf(x) = 
� ∞ 

e ikx(−|k α) 
�� ∞ 

e−ikx� f(x�)dx�
2π−∞| 

|
−∞ 

dk 
= 

� � 
f(x�)e ik(x−x�)|k|αdx� = (f ∗ δα)(x)

2π 

where � ∞ 
ikx α dk 

δα = e |k|
2π

− 
−∞ 

When α = 0, this is δ(x) = 
� 

eikx dk and δ(x) is localized. This function δα(x) is not localized in x.2π 
dn

If α is integer, k α = kn , δn(x) = δ(x), then |�|αf dnf .dxn → dxn| |
Hence, boundary conditions for supper diffusion are subtle (fat tails in steps). 
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4 Subdiffusion 

4.1 Mittag-Leffler Power-Law Decay of Fourier Modes 

Consider symmetric (p(x) = p(−x)), anomalous subdiffusion with an infinite the mean waiting time 
( τ = ∞) but finite σ2 for which the waiting-time distribution satisfies 

�1+γ 
ψ (t) ∼ 

� τ0 
,

τ 

and 
γN(t) ∼ t

where 0 < γ < 1 or equivalently ψ̃ has the following small-s expansion of its Laplace transform , 

ψ̃ (s) ∼ 1 − (τ0s)γ , s 0.→ 

As k 0,→ 
σ2k2 

p̂(k) ∼ 1 − 
2 

Thus, we have 

p̂ (k, s) ∼ 

� 
(τ0s)γ � 

1 
(4)�

s (τ0s)γ + σ
2k2 + 

. 
2 · · · 

The factor in front of (4) is not a constant, and in fact is a singularity, as γ −1 < 0. This crucial 
term, which is negligible in the case of normal diffusion, represents walks that have not moved yet. 

We can rewrite (4) as 

�̂p (k, s) ∼ 
1 
s 

� 
1 

1 + (¯ t(k)s)γ 

� 

, (5) 

where 

¯ t (k)−γ = τ−γ 
0 

σ2k2 

2 
. 

Or, 

¯ t(k) = 
τ0 

k2/γ 

� 
2 
σ2 

� 1 
γ 

∝ 
1 

k2/γ 

Inverting Laplace transform gives 

p̂(k, t) = Eγ (−(t/E(k))γ ) 

nzwhere Eγ (z) is Mittg-Leffler function, and Eγ (z) = 
�∞

n=0 Γ(1+γn) . 
Note 

n n∞
z

∞
z

E1 (z) = 
� 

Γ(1 + n)
= 

� 
= e z , 

n! 
n=0 n=0 

So we recover p̂(k, t) = e−t/t̄(k) for γ = 1. 

zE1/2(z) = e 
2 
erfc(−z), 
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2
where erfc (x) is the complementary error function (erf(z) = 2 

� z 
e−x dx, erfc(z) = 1 − erf(z)).π 0 

In this case, 
¯ p̂(k, t) = et/t̄(k)erfc(

�
t/t(k)) 

Asymptotics: 
¯ p̂(k, t) = Eγ (−t/t(k)γ ) 

For the non-exponential cases 0 < γ < 1, the asymptotic expansions of the Mittag-Leffler 
functions are 

(t/t̄(k))γ � 
, t 0

⎧
exp 

�
Γ(1+γ)¯Eγ (− (t/t(k))γ ) ∼

⎨ 

1 

− � 
t̄(k) 

�γ 
→

, 
,⎩ 

Γ(1−γ) t t →∞ 

so we have stretched-exponential decay at short times and power-law decay at long times. 
Now what is the continuum relaxation equation? 

df ˜ df �
(s) = sf(s) − f(0) = 

� ∞ 

e−st (t)dt 
dt 0 dt 

p̂∂ ̃ ˜(k, s) = sp̂(k, s) − p̂(k, 0)
∂t 

At the long time limit in the central region 

∂ ̃p̂ 1 
(6)

∂t 
(k, s) ∼ 

1 + (τ(k)s)−γ − 1 

(¯ ts)−γ 

= −
1 + (¯ ts)−γ 

= −t̄(k)−γ s 1−γ p̃(k, s)ˆ

σ2
Here, t̄(k)−γ = 

2τ0 
γ k2 = Dγ k

2 = −Dγ k
2
0D 1−γ P (k, s).t 

For p̂, it satisfies equation

∂p̂ 


= −Dγ k
2 p̂0D 1−γ 

∂t t 

where 0D β is the Riemann-Lionvill fractional derivative. So p(x, t) satisfies t 

∂p 
= Dγ 

�
0D 1−γ 

� 
2 

∂t t � p. (7) 

This is a fractional diffusion equation. For subdiffusion, boundary conditions are easy, but initial 
condition is subtle. Besides,0D 1−γ is nonlocal in time, depending on the history. t 


