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1 Review 

Recall (from Lectures 5 and 6) that if the first two moments of a PDF are finite and a 
higher moment diverges, then the Central Limit Theorem will still hold. However, that 
particular distribution will be characterized by “fat tails” with additive tail amplitude. 

In this lecture we consider a general PDF with a diverging second moment, <x2>=∞, 
which can lead to anomalous diffusion. 

2 Borderline cases of the CLT 

First we consider borderline cases of the CLT to examine how the shape of the PDF and 
the diffusive scaling change in the large N limit. For iid random displacements: 

N 

X N = ∑Δ xn 

n =1 

p(x) ≡ PDF for Δxn 

PN (x) ≡ PDF for N displacements 

We define the Strong Central Limit Theorem as (M. Feller, Introduction to Probability, 
1971): 

x 

Let U(x) = ∫ y2 p(y)dy 
− x 

If U(x) ~  L(x)  where L(x) i s"s lowly  varying", 

L(sx)
(i.e. lim x→∞ =1 for s ≠ 0, fixed),

L(x) 

then 
xN → a gaussian random variable 

f (N) 

for some scaling function f (N). 
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Note, that the scaling function f(N) is not required to be N0.5 (normal diffusion). For 
example consider: 

p(x) = 
1+ 

A 

| x3 |
, U(x) ~ ∫

1 

x
dx ~ log(x) 

log(sx) log(s)
lim x→ ∞  = 1 + = 1 

log(x) log(x) 
2 

− 
e 2xNif , then ( ) = a N log N PN ( N log N ) ~ N = N

N logN 2 

So we get back the Gaussian distribution, however the half-width scales as (N logN)0.5. 
This example of anomalous diffusion represents a “superdiffusive” process. Essentially, 
the normal diffusive scaling breaks down before the Gaussian shape of the distribution 
breaks down for borderline cases. 

3 Levy Distributions 

3.1 Definition 
A symmetric Levy distribution, denoted as lα(a,x) is a PDF with a characteristic function: 

l 
∧ 

(a, k) = e −a| k | [1]


Note that this can only be a valid characteristic function for 0 < α < 2 because the 

variance of lα(a,x) does not exist (i.e. <x2>=0) for α > 2. We have already seen some 

examples of Levy distributions. The Gaussian distribution is l2(σ2/2,x): 
2 

2 k 2 − 
2 

x 
2

∧ − e 
p(k) = e 2 ⎯⎯ → p(x) = 

22 

And the Cauchy distribution is l1(a,x): 
∧ a 
p(k) = e ⎯ 2 

− a| k | ⎯ → p(x) = 
(a + x 2) 

Actually, these are the only two Levy distributions that can be inverted and expressed as 
elementary functions. We saw that the Cauchy distribution had infinite variance. In fact, 
for 0 < α < 2, all Levy distributions have infinite variance. Two important features of 
Levy distributions are: 1) They are stable under addition, i.e. a distribution of iid random 
Levy variables approaches a Levy distribution (Levy stable laws) and 2) the parameter a 
controls the tail amplitude, which we will see to be additive for N steps. As an aside, note 
that <|x|>=∞ for α < 1. 
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3.2 Large x expansion 
The large x asymptotic expansion for lα(a,x) is: 

∞ am sin( 
m 

)Γ( m +1)(−1)m −1 

l (a, x) ~ 
1 ∑ 2 , | x |→ ∞ 
| x | m =1 m!| x | m 

This series diverges for α>1 and converges (Laurent) for α<1 where |x|α>a. 

At leading order, it reduces to: 

+ 1) a
l 

sin( 
2

)Γ(
(a, x) ~	

| x |1+ , | x |→ ∞  

where we have a familiar power-law tail with amplitude a. 

3.3 Small x expansion 

We first simplify the inverse transform, realizing that only the even portion of e-ikx 

contributes to the integral: 
∞	 ∞ 

dk
l (a, x) = ∫ e −ikx e − a| k| dk 

~ 2 ∫ cos(kx) e −ak 

2 2−∞ 0 

For small x, expand cos(kx): 
∞ ∞ 

l (a, x) ~ ∑ (−1)m 

∫ (kx)2 me − ak dk 
, x → 0 [2] 

m = 0 (2m)! 
0 

Define the Gamma function: 
∞ 

Γ(z + 1) ≡ ∫ t ze − tdt 
0 

and define a new variable, ω: 
= ak , d = k −1 dk 

This simplifies Equation 2 to: 
∞ ∞ 2m 

1 d⎞ −l (a, x) ~ ∑ (−1)m

x2m ∫ ⎛ 
e , x → 0−1 

m = 0 (2m)! 
0 
⎝ a ⎠ 

⎛ ⎞a ⎝ a ⎠ 

1 ∞ (−1)m x 2m ⎛ 2m + 1⎞~	 ∑ 2 m +1 Γ ⎠ , x → 0 
m =0(2m)! ⎝ 

a 

This series diverges for α<1 and converges (Taylor series) for 1 < a < 2 for |x|α<a. 

At leading order it reduces to: 
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Γ⎝ 
⎛ 1 

⎠ 
⎞ 

l (a, x) ~ 1 , x → 0 
a 

Thus lα(a,x)�∞ as α�0, so the center of the distribution gets sharper and higher and the 

tails get fatter. Figure 1 shows the Gaussian distribution, the Cauchy distribution, and a 
general Levy distribution as α�0. 

P(
x)

 

Gaussian
 Cauchy(a=0.5)
 Levy( α->0) 

Tail decay ~ 
1/x1+α 

x
Figure. 1 Shapes of the Gaussian and Cauchy distributions compared with the Levy distribution as α�0. 

In addition, note the asymptotic form of the Levy distribution as both α�0 and x�0: 

Γ⎛ 1 ⎞ 
x 2 

⎝ ⎠ − 
2 2

l (a, x) ~ e , x → 0 & → 0 

(1−1/ e)= 
2 1/ 

Thus, the central region of a Levy distribution in the low α limit looks like a Gaussian 
distribution with width~α3/2. 

4 Levy flights 

Because of the possibility of taking “large” steps (due to the slow decay of the tails) we 
must address how time is measured during a random Levy process. We distinguish 
between a random “walk” and a random “flight.” Each step of a random walk takes a 
variable time dependent on the length of the step. For example, a random walk correctly 
models a random process at constant velocity. On the other hand, a random flight means 
that the time between both large and small random steps is constant. Here we consider 
Levy flights, realizing that the diffusive scaling for Levy walks will differ. 
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The position after N iid Levy steps is: 
N 

X N = ∑Δ xn 

n =1 

We define: 
p(x) = l (a,x) ≡ PDF for Δxn 

PN (x) ≡ PDF for N Levy displacements 

So: 
∧ 
l (a, k) = e−a| k | 

P 
∧ 

N (k) = e −a N | k | where aN = Na 

Now we solve for PN(x) and address how the width scales with N. First, take the inverse 
Fourier transform to solve for PN(x): 

∞ 
dk

PN (x) = ∫ e −ikx e − Na| k | 
[3]2−∞ 

Next we introduce ω and ζ: 
1 

= kN ⇒| | =| k | N 

x = 1 

N 

Substituting back into Equation 3 gives: 

− a|PN (x) = ∫
∞ 

e −i | d 1
1e 

2−∞ N 

which is a scaled Levy distribution: 
⎛ ⎞1 x

PN (x) = 1 l ⎜a, 1 ⎟ 
⎠N ⎝ N 

Most importantly, note that the width of the distribution ~ N1/α. So for α < 2, we have N1/α 

>>N, characteristic of a “superdiffusive” process. 
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5 Examples of Levy flights 

Figure 2. A characteristic Levy walk 

Figure 2 shows a characteristic Levy flight for a low value of α. Note that the 
characteristic size of the system is the size of the largest step and that the flight is self-
similar at higher magnifications. 

5.1 Low density gases (“Nano”-systems) 
One physical example of a Levy flight is a low-density gas. Here we consider a gaseous 
system where the characteristic system dimension (L) is much less than the mean free 
path of the gas (λmfp), L<< λmfp. Note that λmfp~10-7 m at STP. The dimensionless 
parameter to consider here is the Knudsen number, Kn= λmfp/L, so Kn>>1 in these nano-
systems. 

In the Kn>>1 regime, the gas molecules essentially travel in straight lines and collisions 
with the system walls are dominant. Here we assume the wall is rough so that a colliding 
molecule rebounds at a random angle. Figure 3 depicts high Kn transport in a rough 
container. 

L 

θ 

random deflection angle θ 

Figure 3. Transport of a gas with Kn>>1 in a rough-walled contained 
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We can use a geometric argument to determine the distribution of step sizes (x): 

x 
tan = x

L 
d 

= 
dx 

L2 θcos L 

L2 dx
d = 

x2 + L2 L 

The distribution of rebounding angles is uniform so: 
1 

p = 

p d = pxdx 

L 1
∴ px = 2 x + L2 

Therefore the distribution of N steps is the Cauchy distribution with amplitude L. 

1 x
PN (x) = l1(L , )

N N 

Note that this distribution is only valid for displacements smaller than the mean free path. 
The distribution width grows ~N, so at large enough N diffusive behavior will return. 
Therefore, this nano-system may be modeled as a “truncated Levy flight” (cf. Fig. 4). 

−1 1 log(λmfp/L) 

Figure 4. A truncated Levy flight. Note the transition from molecular transport (Cauchy) to diffusive 
transport (Gaussian). 

5.2 Financial time series 
Financial time series can also be modeled with a truncated Levy flight where the cutoff 
can be applied analytically. For more information, refer to Bouchard and Potters. 

logN 

width 

1 

1/2 
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5.3 Polymer surface adsorption 
A polymer adsorbed to a surface has a finite number of contact points with the surface 
that can be modeled as a Levy flight (Bouchard and George, 1998) (cf. Fig. 5). 

Levy flight 
connecting surface 
contact points 

Figure 5. Polymer adsorbed to a surface 


