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18.325 Problem Set 2 

Problem 1: Variational Theorem 

Suppose that we have a (possibly infinite dimen- 
sional) Hermitian operator 0 operating on some 
Hilbert space {I$)}, and consider the Rayleigh 
quotient ($101$)/($1$).Show that the mini- 
mum of this quotient (or, indeed, any extremum) 
occurs if and only if I $ )  is an eigenstate of 0 .  Do 
this by the using property that, at an extremum 

I $ ) ,  the quotient must be stationary: that is, if 
we add any small 16$) to I $ )  at an extremum, 
the change in the Rayleigh quotient is zero to 
first order in 16$). You should be able to show 
that this stationary condition implies that I$) 
satisfies the eigen-equation. 

Problem 2: 2d Waveguide Modes 
Consider the two-dimensional dielectric waveg- 
uide of thickness h that we first introduced in 
class: 

&hi 

&lo 

lyl<h/2
I Y  I 2 h/2 ' 

where &hi > &lo. Look for solutions with the 
"TM" polarization E = Ez(x, y)ie-iwt. The 
boundary conditions are that Ez is continuous 
and aE,/ay (N  H z )  is continuous, and that we 
require the fields to be finite at x, y -,foo, 

(a) Prove that we can set &lo = 1 without loss 
of generality, by a change of variables in 
Maxwell's equations. In the subsequent sec- 
tions, therefore, set &lo = lfor simplicity. 

(b) 	Find the guided-mode solutions E,(x, y) = 

e f iXE~(y), where the corresponding eigen- 
value w(k) < ck is below the light line. 

(i) Show for the 1 yl < h/2 region the so- 
lutions are of sine or cosine form, and 
that for 1 yl > h/2 they are decaying 
exponentials. 

(ii) Match boundary conditions 	at y = 

f h / 2  to obtain an equation relating 
w and k. You should get a transcen- 
dental equation that you cannot solve 
explicitly. However, you can "solve" it 
graphically and learn a lot about the 

solutions-in particular, you might try 
plotting the left and right hand sides of 
your equation (suitably arranged) as a 

function of kl = 


you have two curves and the solutions 

are the intersections. 


(iii) From the graphical picture, derive an 
exact expression for the number of 
guided modes as a function of k. Show 
that there is exactly one guided mode, 
with even symmetry, as k -,0, as we 
argued in class. 

(iv) If you look at the Hz polarization, how 
do your equations change? (Hint: the 
boundary conditions from Maxwell's 
equations are that H is continuous, the 
components Ellparallel to a dielectric 
interface is continuous, and the compe 
nents Dl = &EL perpendicular to a di- 
electric interface are continuous.) How 
is the number of guided modes affected 
at each k? How about the strength of 
the confinement (i.e. the exponential 
decay rate)? 

Problem 3: Conservation Laws 
(a) Suppose that introduce 	a nonzero current 

J ( X ) ~ - " ~  into Maxwell's equations at a 
given frequency w, and we want to find 
the resulting time-harmonic electric field 
~ ( x ) e - ' " ~(i.e. we are only looking for fields 
that arise from the current, with E -+ 0 
as 1x1 -, oo if J is localized). Show that 
this results in a linear equation of the form 
A I E) = I b), where A is some linear opera- 
tor and Ib) is some known right-hand side in 
terms of the current density J .  

(i) Prove that, if J transforms as some ir- 
reducible representation of the space 
group then I E )  (= E,  which you can 
assume is a unique solution) does also. 
(This is the analogue of the conserva- 
tion in time that we showed in class, 
except that now we are proving it in 
the frequency domain. You could prove 
it by Fourier-transforming the theorem 
from class, but do not do s-instead, 
prove it directly from the linear equa- 
tion here.) 



(ii) Formally, IE) = A-' I b), where A-' is 
related to  the Green's function of the 
system. What happens if w is one of 
the eigenfrequencies? 

(b) Let 	~t be our time-evolution operator, and 
we have some space group G of- symmetry 
operators 0, (g E G) such that [Ut,O,] = 0. 
Now, suppose that we have some state I11,(t)) 
that at one time transforms as purely one 
representation and at a later time trans- 
forms as some other representation (or some 
superposit ion of represent at ion), violating 
the conservation theorem we proved in class. 
Show that this implies that ~t is a nonlinear 
operator (i.e. it depends on the amplitude of 
the state). (In class, we implicitly assumed 
that our operators were linear.)' 

Problem 4: Cylindrical symmetry 

Suppose that we have a cylindrical metallic 
waveguide-that is, a perfect metallic tube with 
radius R, which is uniform in the z direction. 
The interior of the tube is simply air ( E  = 1). 

(a) This 	structure has continuous rotational 
symmetry around the x axis, called the C, 
group.2 Find the irreducible representations 
of this group (there are infinitely many be- 
cause it is an infinite group). 

b) For simplicity, consider the (Hermitian) 
scalar wave equation -V211, = $$Jwith 

= 0. Show that, when we look 
for solutions 11, that transform like one of 
the representations of the C, group from 
above, and have x dependence ei" (from 
the translational symmetry), then we ob- 
tain a Bessel equation (Google it if you've 
forgotten Mr. Bessel). Write the solu- 
tions in terms of Bessel functions, assum- 
ing that you are given their zeros x,,,,,, (i.e. 
Jm(xm,,) = 0 for n = 1,2, .. ., where J, is 
the Bessel function of the first kind ...if you 
Google for "Bessel function zeros" you can 

l A  famous example of this in optics is third-harmonic 
generation. If we have a nonlinear E N IEI2,we can start 
with a planewave at (w,k)and generate another wave at 
(3w,3k). 

2 ~ talso has an infinite set of mirror planes containing 
the z axis, but let's ignore these for now. If they are 
included, the group is called C,V. 

find them tabulated). Sketch the dispersion 
relation w (k) for a few bands. 

(c) From the general orthogonality of Hermitian 
eigenfunctions, derive an orthogonality inte- 
gral for the Bessel functions. 

Problem 5: Numerical computa-
tions with MPB 

For this problem, you will gain some initial expe- 
rience with the MPB numerical eigensolver de- 
scribed in class, and which is available on MIT Server 

in the mpb locker. Refer to the class hand- 
outs, and also to the online MPB documenta- 
tion at  jdj .mit .edu/mpb/doc. For this problem, 
you will study the simple 2d dielectric waveg- 
uide (with &hi = 12) that you analyzed analyti- 
cally above, along with some variations thereof- 
start with the sample MPB input file (2dwaveg- 
uide.ct1) that was introduced in class and is avail- 
able on the course web page. 

(a) Plot the TM (E,) even modes as a function 
of k, from k = 0 to  a large enough k that 
you get at least four modes. Compare where 
these modes start being guided (go below 
the light line) to your analytical prediction 
from problem 1. Show what happens to this 
"crossover point" when you change the size 
of the computational cell. 

(b) Plot the fields of some guided modes on a 
log scale, and verify that they are indeed ex- 
ponentially decaying away from the waveg- 
uide. (What happens at the computational 
cell boundary?) 

(c) Modify the structure so that the waveguide 
has e = 2.25 instead of air on the y < -h/2 
side. Show that there is a low-w cutoff for 
both TM and TE guided bands, as we ar- 
gued in class, and find the cutoff frequency. 

(d) Create the waveguide with the following 
profile: 

Should this waveguide have a guided mode 
as k -+ O? Show numerical evidence to sup- 
port your conclusion (careful: as the mode 



becomes less localized you will need to in- 
crease the computational cell size). 




