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18.325 Problem Set 3 

Problem 1: Perturbation theory 

(a) In class, we derived the 1st-order correction 
in the eigenvalue for an ordinary Hermitian 
eigenproblem 0 lu) = u lu) for a small per- 
turbation AO. Now, do the same thing for 
a generalized eigen~roblemA I u )  =uB I u ) -

That is, assume we have the solution 
ace) lU(o)) = , ( o ) ~ ( o )  lU(o))to , 
perturbed system and find the first- 
order correction u(') when we change 
both A and B by small amounts AA 
and AB. You may assume that u(O) is 
non-degenerate, for simplicity. 

(ii) Now, apply this solution to the gen- 
eralized eigenproblem V x V x E = 

$EE for a small change A&, and show 
that the first-order correction Aw is the 
same as the one derived in class using 
the H eigenproblem. 

(b) Recall the problem of the modes in an L x L 
metal box that we solved in class for the Hz 
(TE) polarization, and which you solved in 
problem set 1for the Ez (TM) polarization. 
Originally, this box was filled with air ( E  = 

1). Now, suppose that we increase E by some 
small constant A& in the lower-left $ x $ 
corner of the box. What is the first-order 
Aw for the first four (lowest w) modes of 
the TM polarization? What happens to the 
degenerate modes? 

(c) In class, 	we calculated the band gap Aw 
that appeared in a uniform (Id) material 
E(X) = ~1 when half of the unit cell a was 
changed to ~1 -AE for some small AE, by 
using perturbation theory. In particular, we 
derived the gap between the first two bands 
that appears at k = n la ,  the edge of the 
Brillouin zone. 

(i) Now, you should compute the gap that 
appears between band 2 and band 3 at 
k = 0, the center of the Brillouin zone, 
to first order. However, do it more gen- 
erally: assume that the ~1 region has 

thickness dl and that the ~1 - AE re- 
gion has thickness a-dl, repeated with 
period a,  and compute Aw as a func- 
tion of dl. 

(ii) At what dl values does this gap at k = 
0 disappear (Aw = O)? What is Aw for 
the quarter-wave stack thicknesses? 

2: 	Band gaps in MPB 

Consider the i d  periodic structure consisting of 
two alternating layers: ~1 = 12 and ~2 = 1, with 
thicknesses dl and d2 = a - dl, respectively. To 
help you with this, I've created a sample input 
file bandgapid.ct1 that is posted on the course 
web page. 

(a) Using MPB, compute and plot the fractional 
TM gap size (of the f i r s t  gap, i.e lowest w) 
vs. dl for dl ranging from 0 to a. What 
dl gives the largest gap? Compare to  the 
quarter-wave thicknesses. 

(b) Given the optimal parameters above, what 
would be the physical thicknesses in order 
for the mid-gap vacuum wavelength to be 
X = 2 ~ c l w= 1.55pm? (This is the wave- 
length used for most optical telecommuni- 
cations.) 

(c) Plot the Id TM band diagram for this struc- 
ture, with dl given by the quarter wave 
thickness, showing the first five gaps. Also 
compute it for dl = 0.12345 (which I just 
chose randomly), and superimpose the two 
plots (plot the quarter-wave bands as solid 
lines and the other bands as dashed). What 
special features does the quarter-wave band 
diagram have? 

Problem 3: Space group of k 

Consider the structure of problem 2. What are 
the symmetry operations of its space group? 
How are these reduced (if at all) if we consider 
Bk-that is, what is the space group as a func- 
tion of k? In class, when we derived the band 
gap, we took the modes at k = ~ / ato be of 
even/odd (cos/sin) form; why was this justified? 

Give an example of a Id periodic structure in 
which the modes at  5 = n/a are not  even or 
odd. Is the band diagram of this structure still 
symmetric (i.e. w (- k) =w( k ) ) ?  



Problem 4: Defect modes in MPB 

In MPB, you will create a (TM polarized) defect 
mode by increasing the dielectric constant of a 
single layer by Ae, pulling a state down into the 
gap. The periodic structure will be the same as 
the one from problem 2, with the quarter-wave 
thickness dl = 1/(1+ m).To help you with 
this, I've created a sample input file defectld.ct1 
that is posted on the course web page. 

(a) When there is no defect (A&) plot out the 
band diagram w(k) for the N = 5 supercell, 
and show that it corresponds to the band 
diagram of problem 2 "folded" as expected. 

(b) Create a defect mode (a mode that lies in 
the band gap of the periodic structure) by 
increasing the e of a single el layer by Ae = 
1, and plot the Ez field pattern. Do the 
same thing by increasing a single ~2 layer. 
Which mode is even/odd around the mirror 
plane of the defect? Why? 

(c) Gradually increase the e of a single ~2 layer, 
and plot the defect was a function of AE 
as the frequency sweeps across the gap. At 
what A& do you get two defect modes in 
the gap? Plot the Ez of the second defect 
mode. (Be careful to increase the size of the 
supercell for modes near the edge of the gap, 
which are only weakly localized.) 

(d) Via first-order perturbation theory, derive 
an exact expression for the rate of change 
4 f ~ )of the defect-mode frequency w of a 
single defect layer ~2 + AE layer, as AE 
is changed. Your expression should be in 
terms of the eigenfield E of the localized de- 
fect state at the current Ae. Verify your for- 
mula numerically by showing, at a couple of 
different values of Ae, that it correctly pre- 
dicts the slope of your w vs. Ae curve above. 
(Note that you can export E to Matlab and 
compute the necessary integrals there or, 
for the Scheme lovers among you, you can 
compute the integral directly in MPB using 
the compute-energy-in-object s or compute- 
field-int egral function .) 

(e) Is there a minimum Ae (of an e2 layer) to  
create a defect mode, or is a defect mode lo- 
calized even for infinitesimal Ae? Support 

your conjecture1 with numerical evidence. 
(Don't forget that, like in problem set 2, as 
the mode becomes less localized you must 
increase the computational cell size. An-
other thing to be careful about is how ac- 
curately you know the location of the gap 
edge-compute the gap edge using the same 
resolution as you are using to compute the 
defect, and you may need to increase both 
resolutions .) 

(f) The 	mode must decay exponentially far 
from the defect (multiplied by an eiEx sign 
oscillation and the periodic Bloch envelope, 
of course). From the Ez field computed 
by MPB, extract this asympotic exponential 
decay rate (i.e. K if the field decays N e-"") 
and plot this rate as a function of w, for 
the first defect mode, as you increase e2 as 
above (vary ~2 SO that w goes from the top 
of the gap to the bottom). 

11, we never merely guess^ we con-
jecture, or perhaps we postulate an ansatz. 


