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Figure 1: (a) Hexagonal cavity surrounded by 
perfect-metal walls. (b) Schematic of a function 
f(x, y) which = 1 in the highlighted region of the 
cavity and = 0 elsewhere. 

18.369 Mid-term Exam 

You have two hours. Notice that all problems have 
equal weight, so don’t spend too much time on one 
problem at the expense of the others. 

Problem 1: Hexagons (30 points) 

Suppose that we have a hexagonal cavity filled with 
ε = 1 and surrounded by perfectly conducting walls, 
as shown in fig. 1(i). 

(a) List the	 symmetry operations and conjugacy 
classes, and give the character table of this sym­
metry group (C6v). 

(b) Suppose that we have a function f(x, y) which 
is 1 in a small region as shown in fig. 1(ii), 
and zero elsewhere. Using the projection op­
erator, write f(x, y) as a sum of partner func­
tions of the irreducible representations of C6v, 
by sketching the partner functions [similar to 
the sketch in fig. 1(ii)]. 

(c) Now,	 suppose that we perturb the cavity by 
partially filling it with one of various (concen­
tric) dielectric shapes, as shown in fig. 2: (i) 
a hexagon rotated by 30◦; (ii) a hexagon ro­
tated by 15◦; (iii) a square (parallel to two sides 
of the hexagon); and (iv) an equilateral trian­
gle (parallel to three sides of the hexagon). In 
which of these perturbed cavities would you ex­
pect some eigenmodes to have non-accidental 
degeneracies, and why? 
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Figure 2: Hexagonal cavity partially filled with di­
electric perturbations of various shapes. 

Problem 2: Band Diagrams (30 points) 

Calvin Q. Luss, a Harvard student, posts to the MPB 
mailing list that he has discovered a bug in MPB. He 
writes: 

I’m getting ready to do a 2d-crystal 
calculation, but first I wanted to do a 1d 
crystal as a test case since I know the 
band diagram analytically for that (from 
Yeh’s book). I used the quarter-wave 
stack shown in fig. 3(i), with a 1d compu­
tational cell of a×no-size×no-size, 
and plotted the TM band structure ω(kx) 
(for k = (k x, 0, 0) with kx from 0 to 0.5 
in MPB units, i.e. from 0 to π/a)— 
everything works fine! Then I do the same 
calculation but with a computational cell 
of a×a×no-size, as shown in fig. 3(ii), 
and the result is wrong! I get all sorts 
of extra bands at bogus frequencies; why 
doesn’t the result match the 1d computa­
tion, since the structure hasn’t changed? I 
think it must be a bug; you MIT people ob­
viously don’t know what you’re doing. 

Sketch out the plots that Calvin got from his two cal­
culations, and explain why MPB is correctly answer­
ing exactly the question that he posed. Sketch at least 
4 bands in the 1d calculation, and at least 6 bands in 

1 



ε 
= 

1
ε 

= 
1.

1
ε 

= 
1

ε 
= 

1.
1

ε 
= 

1
ε 

= 
1.

1
ε 

= 
1

ε 
= 

1.
1

ε 
= 

1
ε 

= 
1.

1 

a 

a 

a 

a 

no-size (i) 

(ii) 

Figure 3: Two MPB unit cells for the band struc­
ture of a 1d-periodic quarter-wave stack: (i) a 1d 
a×no-size unit cell (ii) a 2d a × a unit cell. 

the 2d calculation (not counting degeneracies), and 
label any bands that are doubly (or more?) degener­
ate. 

(You can use the fact that the ε contrast in this case 
is only 10%—the structure is nearly homogeneous— 
to help you sketch out the bands more quantitatively. 
But no need to be too quantitative, however: you 
don’t need to use perturbation theory or anything like 
that; a reasonable guess is sufficient.) 

Problem 3: Operators (30 points) 

First, recall a few fact derived in class. We know that 
the time-harmonic electromagnetic field H(x)e−iωt 

satisfies a Hermitian eigenproblem (for real ε > 0) 

1 ω2 

∇× ∇ × H = Θ̂H = H, (1) 
ε(x) c2 

and this leads to the usual consequences of real ω, or­
thogonal H, etc. You also derived in homework that 
if ε(p,x) is also a function of some parameter p, then 
dω/dp is given exactly via first-order perturbation 

itheory, in terms of the electric field E = 
ωε ∇ × H, 

by: 
∂ε 2 

dω ω 
� 

∂p |E|

dp 
= − 

2 
� 

ε |E|
, (2) 
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where the integrals are over all space (or the unit cell, 
for a periodic structure). 

Now, suppose that ε(p,x, ω) is a function of fre­
quency (the material is dispersive) as well as of space 
and p, although for every ω we assume ε is real 
and positive. Equation (1) still holds, but it is no 
longer an eigenproblem per se—the operator Θ̂ now 
depends upon the “eigenvalue” ω, and the equation 
must be solved self-consistently for ω and H. In this 
case, answer you these questions two, ere your trou­
bles here are through: 

(a) Which of the following properties of Hermitian 
eigenproblems is still true of the self-consistent 
equation Θ(ˆ ω)H = ω

c
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H, and why? [No need 2 

to repeat every detail of proofs given in class; 
just explain clearly why they do or do not apply 
here.] 

(i) ω is real 

(ii) the solutions H can be chosen to trans­
form as irreducible representations of the 
space group 

(iii) for two solutions H and H ′ corresponding 
to frequencies ω and ω′ , respectively, then 
ω 6 ω′ implies that 

� 
H

∗ · H ′ == 0. 

(b) Derive an expression for dω/dp in terms of E, 
analogous to eq. (2) [but it won’t be identical!]. 
Hint: note that you get a Δε both from the di­
rect change in Δp and also indirectly from the 
change Δω ≈ dω Δp.

dp 
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