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Figure 1: (a) Hexagonal cavity surrounded by
perfect-metal walls. (b) Schematic of a function
f(x,y) which = 1 in the highlighted region of the
cavity and = 0 elsewhere.

18.369 Mid-term Exam

You have two hours. Notice that all problems have
equal weight, so don’t spend too much time on one
problem at the expense of the others.

Problem 1: Hexagons (30 points)

Suppose that we have a hexagonal cavity filled with
¢ = 1 and surrounded by perfectly conducting walls,
as shown in fig. 1(i).

(@) List the symmetry operations and conjugacy
classes, and give the character table of this sym-
metry group (Csy).

(b) Suppose that we have a function f(z,y) which
is 1 in a small region as shown in fig. 1(ii),
and zero elsewhere. Using the projection op-
erator, write f(z,y) as a sum of partner func-
tions of the irreducible representations of Cgy,
by sketching the partner functions [similar to
the sketch in fig. 1(ii)].
(c) Now, suppose that we perturb the cavity by
partially filling it with one of various (concen-
tric) dielectric shapes, as shown in fig. 2: (i)
a hexagon rotated by 30°; (ii) a hexagon ro-
tated by 15°; (iii) a square (parallel to two sides
of the hexagon); and (iv) an equilateral trian-
gle (parallel to three sides of the hexagon). In
which of these perturbed cavities would you ex-
pect some eigenmodes to have non-accidental
degeneracies, and why?
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Figure 2: Hexagonal cavity partially filled with di-
electric perturbations of various shapes.

Problem 2: Band Diagrams (30 points)

Calvin Q. Luss, a Harvard student, posts to the MPB
mailing list that he has discovered a bug in MPB. He
writes:

I’m getting ready to do a 2d-crystal
calculation, but first | wanted to do a 1d
crystal as a test case since | know the
band diagram analytically for that (from
Yeh’s book). | used the quarter-wave
stack shown in fig. 3(i), with a 1d compu-
tational cell of axno- si zexno- si ze,
and plotted the TM band structure w(k,)
(for k = (k,,0,0) with k, from 0 to 0.5
in MPB units, i.e. from 0 to n/a)—
everything works fine! Then I do the same
calculation but with a computational cell
of a x axno- si ze, as shown in fig. 3(ii),
and the result is wrong! | get all sorts
of extra bands at bogus frequencies; why
doesn’t the result match the 1d computa-
tion, since the structure hasn’t changed? |
think it must be a bug; you MIT people ob-
viously don’t know what you’re doing.

Sketch out the plots that Calvin got from his two cal-
culations, and explain why MPB is correctly answer-
ing exactly the question that he posed. Sketch at least
4 bands in the 1d calculation, and at least 6 bands in
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Figure 3: Two MPB unit cells for the band struc-
ture of a 1d-periodic quarter-wave stack: (i) a 1d
axno- si ze unit cell (i) a2d a x a unit cell.

the 2d calculation (not counting degeneracies), and
label any bands that are doubly (or more?) degener-
ate.

(You can use the fact that the e contrast in this case
is only 10%—the structure is nearly homogeneous—
to help you sketch out the bands more quantitatively.
But no need to be too quantitative, however: you
don’t need to use perturbation theory or anything like
that; a reasonable guess is sufficient.)

Problem 3: Operators (30 points)

First, recall a few fact derived in class. We know that
the time-harmonic electromagnetic field H(x)e~**
satisfies a Hermitian eigenproblem (for real € > 0)
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and this leads to the usual consequences of real w, or-
thogonal H, etc. You also derived in homework that
if £(p, x) is also a function of some parameter p, then
dw/dp is given exactly via first-order perturbation
theory, in terms of the electric field E = WL’EV x H,

by:
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where the integrals are over all space (or the unit cell,
for a periodic structure).
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Now, suppose that £(p, x,w) is a function of fre-
quency (the material is dispersive) as well as of space
and p, although for every w we assume ¢ is real
and positive. Equation (1) till holds, but it is no
longer an eigenproblem per se—the operator © now
depends upon the “eigenvalue” w, and the equation
must be solved self-consistently for w and H. In this
case, answer you these questions two, ere your trou-
bles here are through:

(a) Which of the following properties of Hermitian

eigenproblems is still true of the self-consistent
equation ©(w)H = £ H, and why? [No need
to repeat every detail of proofs given in class;
just explain clearly why they do or do not apply

here.]

(i) wisreal

(i) the solutions H can be chosen to trans-
form as irreducible representations of the
space group

(iii) for two solutions H and H' corresponding
to frequencies w and w’, respectively, then
w # w’ implies that [H* - H' = 0.
(b) Derive an expression for dw/dp in terms of E,
analogous to eg. (2) [but it won’t be identical!].
Hint: note that you get a Ae both from the di-
rect change in Ap and also indirectly from the
change Aw ~ Z—:Ap.



