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1 PDE Blow Up. 

1.1 Statement: PDE Blow Up. 

The purpose of this problem is to investigate an example where smooth solutions to a 

PDE cease to exist after finite time. In the lectures (see the remark below) we considered the 

problem: 

ut + uux = 0 , with initial data u(x, 0) = F (x) , (1.1) 
⎞

⎧

⎧ 
⎧ 
⎟ • u = u(x, t) is a function of x (space) and t (time).


where

⎧ 
⎧ • ut and ux denote the partial derivatives of u with respect to t and x. 
⎧ 
⎠ 

The solution to problem (1.1) ceases to exist at a finite time (the 

We saw that: derivatives of u become infinite and, beyond that, u becomes (1.2) 

multiple valued), whenever dF/dx is negative somewhere. 
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Consider now the problem: 

ut + uux = −u , with initial data u(x, 0) = F (x) . (1.3) 

Show that the solution to this second problem ceases to exist at a finite time, provided 

that dF/dx < C < 0, where C is a finite (non-zero) constant. Again, what happens is 

that the derivatives become infinite. Calculate C. 

Hint: To show the result (quoted above) in class, we used two (related) approaches, both involving 

the characteristic curves. In the first we obtained the exact solution to the problem (in implicit 

form) and from that we obtained the result. The second approach went straight to the point and 

showed that ux had to ”blow up” on some characteristic curve. Both techniques will work here too, 

but the second approach is much simpler (for the purposes of what you are being asked to show). 

Remark: In order to show the result in (1.2), we proceeded in two ways. 

(1-st). Introduce the characteristic curves in space-time, which — for equation (1.1), are defined 
dx du 

by = u(x, t). Equation (1.1) then yields = 0 along these curves, so we can write 
dt dt 

⎨ 
⎞ ⎨dx 

⎧ 
⎧ ⎧ ⎧= u and x(0) = α ⎧ ⎧ x = α + F (α)t ⎧ 
⎩ ⎟ ⎩dt 

= (1.4) 
⎧ ⎧ ⎧du ⎧ 

≥ 
⎧ ⎧ 

⎧ ⎫ = 0 and u(0) = F (α) ⎫

⎠ u = F (α)
dt 

for each characteristic, which we label by the value x takes for t = 0 — namely: α. Thus, for this 

problem, the characteristics are straight lines in space-time, and along each of them u is constant. 

Clearly, if the initial data F is decreasing anywhere,1 then there will be characteristics that cross 

somewhere in space-time, for a finite time t > 0. But then the solution there would be multiple 

valued! The earliest time at which this happen would correspond to two infinitesimally distant (i.e. 

α and α + dα) characteristics crossing, at which point the drivative ux would become −→. 

Equation (1.4) has the following interpretation — in terms of what the shape of the solution (i.e. 

y = u(x, t), for each fixed time) does as a function of time. Each value of u propagates at its own 

speed, that happens to be u. Thus, in places where u is decreasing, the shape steepens (values behind 

catch-up to the values ahead) and, eventually, an infinite slope arises at some point. 

dF
1Namely: < 0 someplace. 

dx 
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(2-nd). Introduce the characteristic curves, but now directly write an equation for how ux changes 

along each characteristic. By taking the x partial derivative of equation (1.1), it is easy to see that 

dw 
+ w 2 = 0, where w = ux.	 (1.5)

dt 

Along any characteristic where w starts negative, it reaches −→ in a finite time. Hence (1.2) follows. 

2 Critical Point Problems. 

2.1 Statement: Saddles and Conservative Systems. 

Saddles for conservative systems are very special, since the rate of expansion and con­

traction along the two principal directions are equal. The purpose of this problem is to 

guide you in the process of showing this. 

Consider a phase plane autonomous system 

dx	 dy 
= f (x, y) and = g(x, y),	 (2.1)

dt dt 

where both f and g have continuous partial derivatives. We will now assume: 

A.	 The origin x = y = 0 is an isolated critical point; in fact: a saddle, with eigenvalues 

for the linearized problem ∂1 > 0 > ∂2. 

B.	 The system is conservative near the origin. Namely: there is a function E = E(x, 0 — 

defined in a neighborhood of the origin — which is a constant on the orbits. Furthermore, E is 

continuously differentiable and �E = 0, except at the origin. 

C.	 The origin is a true saddle for E. This means that E is twice differentiable at the origin, 

with det (D2E) < 0. 

Show that: �1 = −�2. Equivalently, that: fx(0, 0) + gy(0, 0) = 0. 

Note (what does C mean?): Since E is twice differentiable at the origin, we can write2 

⎛ ⎭1 2)1.5E = E0 + a x 2 + b x y +
1 
c y 2 + o (x 2 + y ,	 (2.2)

2	 2 

2This is, in fact, the definition of twice differentiable. 
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where E0, a, b, and c are constants. Then det (D2E) < 0 ∈≥ ac − b2 < 0 — which means that 
1 

the quadratic form Q = Q(x, y) = 
1 
a x 2 + b x y + c y 2 above in (2.2) is non-degenerate and non­

2 2 
definite. Thus: (I) The level lines for Q govern the local behavior of the level lines for E, and (II) 

Q has a saddle at the origin, so its level lines yield a saddle. Therefore the surface z = E(x, y) has 

a saddle at the origin, which is dominated by the quadratic terms in its Taylor expansion. 

As an example where this is not true, consider the system ẋ = x and ẏ = − 2y, which has a saddle 

at the origin and the conserved quantity E = y x 2 . But the surface z = E(x , y) does not have a 

saddle at the origin. Another example is provided by the system ẋ = x and ẏ = − 3y, also with a 

saddle at the origin and a conserved quantity E = y x 3 . In this case the surface z = E(x , y) does 

have a saddle at the origin, but it is a very degenerate saddle.3 

Note (about �E): From equation (2.2) is follows that 
⎪ � ⎪ � ⎪ � 

a b x 
⎬ � 2 ⎬ � ⎬ � 2E = � 

a x + b y 
⎝ + o (x 2 + y ) = � ⎝ � ⎝ + o (x 2 + y ). (2.3)⇒ 

b x + c y b c y 

Thus, because the matrix of coefficients is non-degenerate, ⇒ E = 0 near (but not at) the origin. ⇐ 

Hint: Because E is conserved: 

Z = Z(x, y) = f Ex + g Ey � 0. Why this? (2.4) 

On the other hand, because f and g are differentiable (and the origin is a critical point), we can 

write (for some constants ϕ, λ, δ, and β): 

2 2f = ϕ x + λ y + o (x 2 + y ) and g = δ x + β y + o (x 2 + y ). (2.5) 

Substitute these expansions — and (2.3), into (2.4) and then conclude that it must be ϕ + β = 0 — 

which is precisely what you are being asked to show. 

Remark (general saddles): Modulo a nonsingular linear transformation of the dependent 

variables x and y, and a change in the time scale (possibly including a time reversal), the equations 

for a linear system with a saddle can always be written in the form 

dx dy 
= − x and = ωy, where ω ∼ 1. (2.6)

dt dt 

3You would not want to sit on a horse saddle made following this design! 
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Conserved quantities for this last system must have the form E = f (|x| � y) — where f = f (α) is 

some arbitrary function. But then 

∗	 � ∗ �Ex = sign(x) x(�−1) y f (|x| y) and Ey = x � f ( x y),	 (2.7)| | 

so	 that E vanishes identically for x = 0, unless ω = 1 (which is when the trace of the matrix of ⇒
coefficients vanishes). 

2.2 Statement: Critical Points for Conservative Systems. 

This problem generalizes the result in the problem “Saddles and Conservative Systems” 

to arbitrary critical points for conservative systems in any dimension. For such points 

the the linear eigenvalues must add up to zero. 

Consider an N -dimensional autonomous system dx 
= F(x)	 (2.8)

dt 

where x and F are N -vector valued, and F is continuously differentiable. Assume now that 

A.	 The origin x = 0 is a non-degenerate critical point. Namely 

F = A x + O(�x� 2), where A is a nonsingular N × N matrix. (2.9)· 

B.	 The system is conservative near the origin. Namely: there is a function E = E(x) — defined 

in a neighborhood of the origin — which is a constant on the orbits. 

C.	 E is continuously differentiable. Also twice differentiable at the origin, with: 

1 
E = x · Q · x + O(�x� 3), where Q is a symmetric, nonsingular, N × N matrix. (2.10)

2 

Then show that: Tr(A) = 0. 

Thus, the critical point can neither be an attractor nor a repeller, since in these cases all the 

eigenvalues have real parts with the same sign. In 2-D this only allows for either saddles — with 

the two eigenvalues of the same size — or centers. In 3-D, again, only two possibilities are allowed: 

1. Saddle: real eigenvalues, one of opposite sign to the other two, all three adding up to zero. 
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2.	 Saddle-spiral: one real eigenvalue and two complex conjugate ones, with the real part of the 

complex conjugate eigenvalues equal to 1/2 the negative of the real eigenvalue. 

Note (about �E): From equation (2.10) is follows that 

E = Q · x + O(�x� 2).	 (2.11)⇒

Thus, because the matrix of coefficients is non-degenerate, ⇒E = 0 near (but not at) the origin. ⇐ 

Hint: Because E is conserved: 

Z = Z(x) = F · ⇒E � 0. Why this? (2.12) 

Substitute here the expansions in (2.9) and (2.11), and then conclude that it must be Tr(A) = 0. 

IMPORTANT: Let M be an N × N symmetric matrix, such that x M x = 0 for every choice ·	 ·
of x. Then M = 0. Note though: the fact that M is symmetric is crucial for this result. 

2.3 Statement: Structural Stability of Stars. 

Consider a system in the plane 
dx ⎨ 

dt 
= f (x, y) , ⎧ 

⎧ 
⎧ 
⎩ 

dy 
dt 

= g(x, y) , 
⎧ 
⎧ 
⎧ 
⎫ 

(2.13) 

such that the origin P = (x, y) = (0, 0) is an isolated critical point, with the linearized system there 

having a stable star. Now consider the following two alternatives for the complete behavior of the 

system: 

a) Linearized: stable star.	 Fully nonlinear: stable spiral. 

b) Linearized: stable star.	 Fully nonlinear: stable proper node. 

Which ones are possible? For each one that is possible, give an example of a system with the desired 

behavior. Otherwise, explain why you think the particular alternative cannot happen. In this case, 

how close can you get (produce an example that “almost” does it)? 
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Optional: Give thought to the nature of the perturbation you need: smooth4 perturbations will not 

do the job, why? It turns out that the perturbations needed cannot even have a second derivative 

at the origin.5 Can you give some argument in the direction of what is the “minimum” amount 

of singularity needed for the job? Note that arbitrarily singular perturbations cannot be allowed, 

since then the notion of a linearized problem will not make sense. 

Recall the definitions: 

1. For a linear system, a stable star is a point with a double eigenvalue of equal algebraic and 

geometric multiplicities. Thus its associated matrix is a multiple of the identity. 

2. We say that a critical point for a nonlinear system is a node (spiral, whatever) if the phase 

portrait NEAR the critical point can be “deformed” by a continuous transformation 

into the phase portrait for the corresponding linear system. That is: the two phase portraits 

“look” qualitatively the same. For the purposes of this problem use this second “definition” (i.e.: 

do not worry about continuous transformations, just show that the key properties are the same). 

Thus, for example, the origin is: 

2a. A (stable) spiral point if the orbits near the origin satisfy: r ≡ 0 and ζ ≡ → (or ζ ≡ −→) 

.as t ≡ →

2b. A (stable) proper node if all the orbits near the origin approach it as t ≡ →, and there 

are two special directions (ζ = ±ζ1 and ζ = ±ζ2) such that: 

• There is exactly one orbit such that ζ ≡ +ζ1 .as t ≡ →
• There is exactly one orbit such that ζ ≡ −ζ1 .as t ≡ →
• For all other orbits: As t ≡ →, either ζ ≡ +ζ2, or ζ ≡ −ζ2 

For the unstable cases, simply change t ≡ → to t ≡ → in the definitions above. 

Hint 1 Consider first small linear perturbations to a linear systems that can cause the appropriate 

changes. Then write a system where perturbations of the same form are introduced by a nonlinearity. 

The nonlinearity will have to be small, so that it vanishes faster than the linear terms as the origin 

is approached; but do not make it vanish too fast, else it will not do the job! In fact, you should find 

4Smooth means that the perturbation has infinitely many derivatives.


5One derivative is needed to have the linearization make sense.
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that it must vanish so ”slowly”, that the resulting function has second derivatives that ”blow up” at 

the origin. 

3 Bifurcation Problems. 

3.1 Statement: Bifurcations of a Critical Point for a 1D map. 

When studying bifurcations of critical points in the lectures, we argued that we could understand 

most of the relevant possibilities simply by looking at 1-D flows. The argument was based on the 

idea that, generally, a stable critical point will become unstable in only one direction at a bifurcation 

— so that the flow will be trivial in all the other directions, and we need to concentrate only on what 

occurs in the unstable direction. The only important situation that is missed by this argument, is 

the case when two complex conjugate eigenvalues become unstable (Hopf bifurcation.) Because in 

real valued systems eigenvalues arise either in complex conjugate pairs or as single real ones, the 

cases where only one (or a complex pair) go unstable are the the only ones likely to occur (barring 

situations with special symmetries that “lock” eigenvalues into synchronous behavior.) 

The same argument can be made when studying bifurcations of limit cycles in any number of 

dimensions. In this case one considers the Poincaré map near the limit cycle,6 with the role of the 

eigenvalues taken over by the Floquet multipliers. Again, we can argue that we can understand a 

good deal of what happens by replacing the (multi-dimensional) Poincaré map by a one dimensional 

map with a stable fixed point, and then asking what can happen if the fixed point changes stability 

as some parameter is varied. In this problem you will be asked to do this. 

Remark 1 Again, some important cases are missed by this approach. Namely: the cases where 

a pair of complex Floquet multipliers becomes unstable (a Hopf bifurcation of a limit cycle) and the 

cases where a bifurcation occurs because of an interaction of the limit cycle with some other object 

(say, a critical point.) Several examples of these situations can be found in the book, in section 8.4 

(Global Bifurcations of Cycles.) 

Consider a one dimensional (smooth) map from the real line to itself 
x −≡ y = f (x, µ) , (3.1) 

6The limit cycle is a fixed point for this map. 
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that depends on some (real valued) parameter µ. Assume that x = 0 is a fixed point for 

all values of µ (that is, f(0, µ) � 0). Furthermore, assume that x = 0 is stable for µ < 0 and 

unstable for µ > 0. That is: | �f 
�x 

(0, µ)| < 1 for µ < 0 , and (3.2) 

�f | 
�x 

(0, µ)| > 1 for µ > 0 . (3.3) 

A further assumption, that involves no loss of generality (since the parameter µ can always be 

re-defined so it is true) is that 
�2f 

(0, 0) = 0 .	 (3.4)
�x�µ 

⇐ 

This guarantees that the loss of stability is linear in µ, as µ crosses zero. This is what is called a 
�f 

transversality condition. It means this: If you graph of the Floquet multiplier (0, µ) as a function 
�x 

of µ, then the resulting curve crosses the unit circle transversaly (i.e.: it is not tangent to it) for 

µ = 0. 

By doing an appropriate expansion of the map f for x and µ small (or by any other means), 

show that (generally7 ) the following happens: 

�f 
a) For (0, 0) = 1, either: 

�x 

a1) Transcritical bifurcation (no special symmetries assumed for f): There exists another 

fixed point, x� = x�(µ) = O(µ), such that: x� > 0 is unstable for µ < 0 and x� < 0 is 

stable for µ > 0. The two points “collide” at µ = 0 and exchange stability. 

a2)	 Supercritical or soft bifurcation, f is an odd function of x: Two stable fixed points exist 

for µ > 0, one on each side of x = 0, at a distance O(
∞

µ). All three points merge for 

µ = 0. 

a3)	 Subcritical or hard bifurcation, f is an odd function of x: Two unstable fixed points exist 

for µ < 0, one on each side of x = 0, at a distance O(
∞−µ). All three points merge for 

µ = 0. 

Explain what all of this means in the context of a limit cycle. 

7There are special conditions under which all this fails. You will have to find them as part of your analysis. What are 

they? 
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�f 
b) For (0, 0) = −1 (no special symmetries assumed for f), either: 

�x 

b1) Supercritical or soft flip bifurcation: For µ > 0 two points exist x1(µ) � −x2(µ) (both of 

them of size O(
∞

µ)), on each side of the fixed point x = 0, such that x2 = f(x1, µ) and 

x1 = f(x2, µ). Thus {x1, x2} is a period two orbit for the map (3.1). Show that this 

orbit is stable. 

b2) Subcritical or hard flip bifurcation: For µ < 0 two points exist x1(µ) � −x2(µ) (both of 

them of size O(
∞−µ)), on each side of the fixed point x = 0, such that x2 = f(x1, µ) and 

x1 = f(x2, µ). Thus {x1, x2} is a period two orbit for the map (3.1). Show that this 

orbit is unstable. 

In the context of a limit cycle, these are the period doubling bifurcations. Explain. 

Hint 1 If you expand f in a Taylor expansion near x = 0 and µ = 0, up to the leading order 

beyond the trivial first term (f � ±x), and you are careful about keeping all the relevant terms (and 

nothing else), and you are careful about identifying certain terms that are known to vanish, the 

problem reduces to (mostly) trivial high-school algebra. In figuring out what to keep and what not to 

keep, note that you have two small quantities (x and µ), whose sizes are related. The whole thing 

is very much like the Hopf bifurcation expansion calculation done in the lectures (or in the course 

notes), but much, much simpler computationally. 

In part (b) you will have to keep in the expansion not just the leading order terms beyond the 

trivial first term, but the next order as well. Notice that, in this case, you will be trying to find 

solutions of f(f(x, µ), µ) = x. When you calculate f(f(x, µ), µ), you will see that the second order 

terms cancel out — thus the need to keep one extra term in the expansion. This is, exactly, the 

same phenomena that forced the need to carry the Hopf bifurcation calculation (in the lectures, etc.) 

to third order. 

Just to make the notation simple, use the letters a, b, . . . etc., to denote the various partial 
n+mf 

derivatives (0, 0) that you will need in the Taylor expansion. Please, do not use the notation 
m�nx� µ


n+mf

(0, 0) everywhere; just once when you define a, b, . . ., etc. 

m�nx� µ 
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4 Approximation Techniques Problems. 

4.1 Statement: Multiple scales and limit cycle problem 01. 

Consider the equation 

d2x dx 1 
dt2 

− γ cos(x) + ∞
γ 

sin(
∞

γx) = 0 , where 0 √ 1.< γ (4.1)
dt 

Use a multiple scales analysis to calculate the frequency, stability and amplitude of the limit cycle 

(the frequency up to the first correction beyond linear and the amplitude up to leading order). 

5 Poincaré Map Problems. 

5.1 Statement: Simple Poincaré Map for a limit cycle. 

Consider the following autonomous phase plane system 
⎨ 

⎛ ⎭dx 1 3 ⎧ 
⎧= (x2 + y4) x − 

4 x
2 y − x y2 − 4 y3 , ⎧− x

⎩dt 
(5.1) 

⎛ ⎭ 
⎧dy 
⎧1 1 2 3 ⎧= (x2 + y4) y + 

4 x
3 x y + x y2 − y . ⎫ 

4dt 
− 

This system has a periodic solution, which can be written in the form 

x = 2 cos �, y = sin �, where 
d� 

= 2 (x 2 + y 4) = 2 (1 + cos 2 �)2 . (5.2)
dt 

This solution corresponds to the orbit going through the point x = 0, y = 1 in the phase plane — 

which orbit is an ellipse, as (5.2) shows.8 

Construct (either analytically or numerically) a Poincaré map near this 

orbit, and use it to show that the orbit is a stable limit cycle. 

Define the Poincaré map z � u = P (z) as follows: 

• For every sufficiently small z, let x = X(t, z) and y = Y (t, z) be the solution of the system in 

(5.1) defined by X(0, z) = 0 and Y (0, z) = 1 + z. 

8Notice that � is a strictly increasing function of time. 
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• For this solution the polar angle ζ in the phase plane is an increasing function of time, starting 

at ζ = (1/2) ν for t = 0. Thus, there will be a time t = tz at which the solution will reach 

ζ = (5/2) ν — notice that tz is a function of z . . . . . . . . . . . . . . . Then take u = Y (tz ) − 1., z

Hint: Because tz is a function of z, unknown a priori, the definition of the Poincaré map above 

is a bit awkward to implement. To avoid the issue of having to calculate tz for each solution, 

it is a good idea to use a parameter other than time to describe the orbits. For example, if the 

equations are written in terms of a parameter such as the polar angle — namely dx/dζ = F (x, y) 

and dy/dζ = G(x, y), then the Poincaré map is easier to describe, as ζ varies from ζ = (1/2)ν to 

ζ = (5/2)ν in every one of the orbits needed to compute u = P (z). 

6 Fourier Series Problems. 

6.1 Statement: Fourier Series. 

This problem objective is to “experimentally” study how Fourier Series converge. For this 

purpose you should use the following MatLab scripts (which you can download from the WEB 

page): 

readmeFouSer.m 

fourierSC.m 

FSFun.m 

FSoption.m 

FSoptionP.m 

heatSln.m 

Put them in a directory and start MatLab in that directory. The help command will work then for 

these scripts. For example: 

help readmeFouSer 

will give you a short description of all the scripts. Each script has it’s own more detailed description. 

The script you need is fourierSC. The others (except for heatSln) are helper scripts. 
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Note:	 you can alter FSFun.m and write there any function for which you want to investigate 

the Fourier Series (this will allow you to go beyond the preselected options). 

Notice also that fourierSC makes tons of plots (they will show up one on top of the other, so you’ll need 

to ”uncover” them). 

This is what you should do: 

Use the script fourierSC and report which sort of ”patterns” do you see in the way Fourier Series 

converge. Experiment with the various choices. Look at the plots you’ll get and think: what is 

happening? Note that many plots useful in figuring out how fast things converge (i.e. how fast do 

the Fourier coefficients vanish as n ≡ →) will be made by the scripts. 

Look at the plots, look for patterns and trends. Make an hypothesis as to what is happening and 

then check it by further experimentation (use for this the script FSFun to produce functions where 

you can test your hypothesis). Then write your conclusions in the answers. Describe the evidence 

for your conclusions too; no proofs required, numerical evidence is enough. Think of it in the same 

way that you would think in the situation of an experimenter in a lab trying to figure out what 

happens in some problem. 

By the way: you can use a few plots in your answer if you want, but do not go wild on this. 

Note: Anything smaller than about 10−14 is numerical error, ignore it! 

You will see graphs of the power spectrum appearing. This is just 

⎜ 
c2 
n + s
2 

n ,


where cn and sn are the coefficients of cos(nx) and sin(nx) in the Fourier Series. It gives you an 

idea of ”how important” the n-th mode is in the Fourier expansion. The name follows from the fact 

that in many physical situations you can interpret the square of the amplitude of the n-th Fourier 

coefficient as the amount of energy in the n-th mode of the solution (this is the case for the wave 

equation, for example). 
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7 Hamiltonian Systems Problems. 

7.1 Statement: Mass in 2D with a central force. 

This problem is a generalization of problem 8.6.7 (page 295) in the book by Strogatz. 

Consider the motion of a particle of mass m in the plane, subject to a central force given by a 
⎜ 

2potential V = V (r) — where r = x2 + y . The equations are then: 

d2x � d2y � 
m = and m = −

�y
V . (7.1)

dt2 
−

�x
V 

dt2 

We will assume that: d∗• V (r) = V (r) > 0 (force always points towards center.) 
dr 

.• V (r) ≡ → as r ≡ →

r 2V (r) ≡ 0 as r ≡ 0.• 

a) Show that the equations can be written (using polar coordinates) in the form: 

d2r h2 
∗ dζ h 

m = 
3 
− V (r) and 

dt 
= 

mr2 
, (7.2)

dt2 mr

where h is a constant (the angular momentum.) 

dζ 
b) Show that the system has solutions of the form r = r0 and = �0, corresponding to uniform 

dt 
circular motion of radius r0 and frequency �0. Find formulas for r0 and �0 for the case when 

h > 0 and V = kr, where k > 0 is a constant. 

c) Find the frequency �1 for small radial oscillations about a circular orbit and show that (generally) 

these small radial oscillations give rise to quasiperiodic motion. That is, the frequencies �0 

and �1 are not rationally related. In particular, calculate �1/�0 for the case V = kr. 

d) Generalize (c) to the case of finite amplitudes. In fact, show that the general solution of (7.1) — 

excluding the case when h = 0 — is either periodic or quasiperiodic with two periods (with the 

second case being the generic one). In particular, this means that the motion in this system 

is never chaotic (this is an example of a Completely Integrable Hamiltonian System.) 

Hint: analyze first the equation for the radial motion and show that the solutions are periodic. 

Then investigate the angular variable and notice that the orbital period (the time it takes ζ to 

change by 2ν) will, generally, not be rationally related to the period in the radial variable. 
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8 Floquet Theory Problems. 

8.1 Statement: Balancing a broom. 

Consider the problem of balancing a broom upright, by placing it on a surface that moves up and down 

in some prescribed manner. Specifically: 

Assume a rough flat horizontal surface, which oscillates up and down following some prescribed law 

(that is, at any time the surface can be described by the equation y = Y (t), where y is the vertical 

coordinate, and Y is some oscillatory function). On this surface we place a broom, in upright 

position, with the sweeping side pointing up.9 Question: Can we prescribe Y in such a way 

that the broom remains upright — i.e.: the position is stable? 

In order to answer the question, consider the following idealized situation: 

A)	 Replace the broom by a mass m, placed at the upper end of a (massless) rigid rod of length 

L. Let the displacement of the rod from the vertical position be given by the angle ζ, with 

ζ = 0 corresponding to the rod standing vertical, and the mass on the upper end. 

B)	 The bottom of the rod is attached to a hinge that allows it to rotate in a plane. Thus the 

motion of the rod is restricted to occur on a plane.


C) Assume that friction can be neglected.


D)	 The hinge to which the rod is attached oscillates up and down, with position x = 0 and 

y = Y (t) — x is the horizontal coordinate on the plane where the rod moves. The mass is 

then at x = L sin(ζ) and y = Y + L cos(ζ) — we measure angles clockwise from the top. 

Now, do the following: 

(1) 

Use Newton’s laws to derive the equation of motion for the mass m. You should obtain a second 

order ODE for the angle ζ, with coefficients depending on the parameters g (the acceleration of 

gravity) and the length of the rod L — in addition to the forcing function Y = Y (t). 

9Because the surface is rough, the contact point of the broom with the surface will not move relative to the surface. 
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Hint: Only two forces act on the mass m, namely: gravity and a force F = F (t) along the rod. 

The force F has just the right strength to keep the (rigid) rod at constant length L — this is enough 

to determine F , though you do not need to calculate it. 

(2) 

You should notice that adding a constant velocity to the hinge motion (that is: Y ≡ Y + v t, where 

v is a constant) does not change the equation of motion. Why should this be so? What physical 

principle is involved? 

(3) 

Write down the (linearized) equations for small perturbations of the equilibrium position (ζ = 0) 

that we wish stabilized. Stability occurs if and only if Y = Y (t) can be selected 

so that the solutions of this linear equation do not grow in time — strictly 

speaking we should also consider the possible effects of nonlinearity, but we will ignore this issue here. 

(4) 
1 2You should notice that it is possible to stabilize ζ = 0 by taking Y = a t , where a > 0 is a − 
2 

constant acceleration. How large does a have to be for this to happen? Give a justification of this 

result based on physical reasoning, without involving any equations (this is something you should 

have been able to predict before you wrote a single equation). 

(5) 

Of course, the “solution” found in (4) is not very satisfactory, since Y grows without bound in it. 

Consider now oscillatory forcing functions of the form: 

Y = φ cos(� t) , (8.1) 

where φ > 0 and � > 0 are constants (with dimensions of length and time−1, respectively). 

The objective is to find conditions 
(8.2) 

on (ω, �) that guarantee stability. 



� 
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The next steps will lead you through this process, but first: Nondimensionalize the (linearized) 

stability equation. In doing so it is convenient to use the time scale provided by the forcing to 

nondimensionalize time — i.e.: let the nondimensional time be θ = � t . 

This step should lead you to an equation describing the evolution of the angle ζ (valid for small 

angles), involving two nondimensional parameters. One of them, γ = φ/L, measures the amplitude 

of the oscillations in terms of the length of the rod. The other measures the time scale of the forcing 

(as given by 1/�) in terms of the time scale of the gravitational instability — a function of g and 

L. Call this second parameter µ — note that in the equation only µ 2 appears, not µ itself. 

(6) 
Find the stability range for µ as a function of γ, for the values 0 < γ ≈ 0.6 — it is enough 

to pick a few values of γ, say γ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and then to compute the stability range 

for each of them. 

Note/hint: This step will require not just analysis, but some numerical computation. So as not 

to be forced to explore all possible values of µ when looking for the stability ranges (numerically an 

impossible task), you should notice that the analysis for γ = 0 can be done exactly — and should 

provide you with a good hint as to where to look. 

(7) 
2ν 

Write the period p = of the forcing, in terms of the nondimensional parameter µ, and the 

parameters g and L. The results of part (6) should provide you with the period ranges (for a given 

oscillation amplitude) where stability occurs. Use this information to provide a rough explanation 

of why it is relatively easy to balance a broom on the palm of your hand (using the strategy outlined 

in this problem — try it), and why you will not be able to balance a pencil. 

(8) 
For 0 ≈ γ √ 1 and 0 ≈ µ √ 1 you should be able to obtain analytical approximations for the stable 

ranges. Do so, and compare your results with those of part (6). 

Hint: Floquet theory provides a function (the Floquet Trace ϕ = ϕ(µ, γ)) that characterizes lin­

earized stability — stability if and only if ϕ ≈ 1. Compute this function for µ and γ small.| | 
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8.2 Statement: Variable Length Pendulum. 

Consider a pendulum (in a plane), whose arm length L > 0 changes in time (i.e.: L = L(t)). To 

make matters more precise: 

(a)	 Let the hinge for the pendulum be at origin in the plane: x = y = 0. 

(b)	 Let the mass M for the pendulum be at x = L sin ζ and y = −L cos ζ, where ζ is the angle 

measured (counter-clockwise) from the down-rest position of the pendulum. 

(c)	 Let g be the acceleration of gravity, and assume that frictional forces can be neglected. 

(d)	 Assume that the mass of the pendulum arm can be neglected. 

Now do the following 

A	 Using Newton’s laws, derive the equations for the pendulum.


Hint: There are two forces acting on the mass M :


–	 The force of gravity (of magnitude Mg, pointing downwards). 

–	 A force (of magnitude F = F (t)) acting along the arm of the pendulum. 

The force F is not known a-priori, but it must have the exact magnitude to keep the distance from 

the mass to the pendulum hinge at the length L = L(t). This is enough to determine this force. 

B	 Consider the following situation: you have a mass tied up at the end of a string. The string 

goes through a small hole somewhere — say, the hole at the end of a fishing rod. Now, pull 

steadily on the string, shortening the string length from the hole to the mass (do not move 

the hole while this happens). You should observe that, quite often, you end up with the 

mass going around the “fishing rod”, wrapping the string there. Explain this behavior 

using the equations derived in A. (Note that real life is neither 2-D, nor frictionless: the 

equations tend to over-predict what happens). 

C	 Study the stability of the ζ = 0 equilibrium position for the pendulum. Linearize the equations 

near this solution, and obtain an equation of the form 

d2� 
+ V (t)� = 0 ,	 (8.3)

dt2 



Rosales 18.385j/2.036j Problem List.	 20 

where � = Lζ and V = V (t) is some “potential” obtained from L and its derivatives. 

D Argue that, if L = L0 (1 + β cos(� t)) is sinusoidal,10 with small amplitude 0 < β √ 1 varia­

tions , then one can take 

V = �2(1 + γ cos(�t)) , (8.4) 

in (8.3), where γ is small. Then (8.3) becomes Mathieu’s equation. Non-dimensionalize the 

equation, so it takes the form 

d2π 
+ (µ 2 + β cos θ) π = 0 ,	 (8.5)

dθ 2 

for some π, µ and θ . 

E	 Consider now Mathieu’s equation and use Floquet theory to study the stability of the pen­

dulum. That is, calculate (numerically) the trace of the Floquet matrix as a function of µ 

and β. Note that the period (in terms of the variable θ ) to use in the calculation is 2ν, 

and that instability corresponds to ϕ = trace/2 having magnitude bigger than one. HINT: 

calculate (and plot) the trace as a function of µ in the interval 0 ≈ µ ≈ 2 for various values of β, 

say β = 0.1, 0.2, 0.3, 0.4, 0.5, . . . — give arguments explaining why one should expect 

this strategy to work “a priori”, i.e. before you carry it through. 

9 Fractals and Dimension Problems. 

9.1 Statement: Generalized Cantor Sets. 

Suppose that we construct a new kind of Cantor set, by removing the middle half of each subinterval, 

rather than the middle third. 

a)	 Show that the “length” of the resulting set still vanishes, as in the case of the regular Cantor 

set. 

b)	 Find the similarity dimension of the set. 

10Here L0 > 0, � > 0, and � > 0 are constants. 
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c)	 Generalize the construction so as to produce a Cantor set with zero length and with a similarity 

dimension that can be picked as any arbitrary number in 0 < d < 1. 

9.2 Statement: Decimal Shift Map. 

This is, basically, the same as problems 10.3.7 and 10.3.8 (pp. 390-391) in the book by Strogatz. 

Consider the decimal shift map on the unit interval, given by: 

xn+1 = S(xn) = 10 xn (mod 1) .	 (9.1) 

As usual, “mod 1” means that we look only at the non-integer part of the variable. Thus, for


example, S(0.263) = 0.63 and S(0.0417) = 0.417.


a) Draw the graph of the map S.


b) Find all the fixed points. Hint: write xn in decimal form.


c) Show that the map has periodic points of all periods, but that all of them are unstable.


Hints: 
•	 For the first part, give an explicit example of a period p point, for each integer p > 1. 

•	 For the second part, show that given x0 on a periodic orbit (i.e.: the orbit given by (9.1), 

starting at x0, is periodic) then β > 0 can be found (where β can be taken arbitrarily 

small) such that the orbit starting at X0 = x0 + β — call it {Xn} — satisfies 

1 
max Xn − xn

2 
. 

n�0 
| | ∼ 

In fact, you can choose β so that Xn − xn ∼ 0.4 for all n large enough! | | 

d)	 Show that the map has infinitely many aperiodic orbits. Hint: think irrational numbers. 

e) Considering the rate of separation between two nearby orbits, show that the map has sensitive 

dependence on initial conditions. 
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f ) An orbit {xn} is said to be dense if it eventually gets arbitrarily close to every point11 in phase 

space — in this case: the unit interval. More precisely, the orbit {xn} is dense if given any 

γ > 0 and any point z ≤ [0, 1], there is some finite n such that xn − z < γ.| | 

Explicitly construct a dense orbit for the decimal shift map. 

9.3 Statement: Coastline Fractal. 

In this problem we construct a fractal that is a very idealized caricature of what a coastline looks like. 

The construction proceeds by iteration of a basic process, which we describe next. 

We start with a simple curve, �0, and apply to it a simple process, that yields a new curve �1. This 

new curve is made up of several parts, each of which is a scaled down copy of �0. The same simple 

process is then applied to each of these parts, yielding �2. Then we iterate, to obtain in this fashion 

a series of curves �n, for n = 0, 1, 2, 3 . . .. The fractal is then the limit of this process: � = lim �n 
n�→ 

— provided the limit exists. 

For the “coastline fractal” we start by picking an angle 0 < ζ < ν, and a length R0 > 0. Then 

the first curve is: 

�0 = Circular arc of radius R0, subtending an angle ∂. (9.2) 

Next divide �0 into three equal sub-arcs, each subtending an angle ζ/3, and replace each 

of these pieces by a properly scaled version of �0. This yields �1. The process is then 

repeated on each of the three pieces making up �1, so as to obtain �2, and so on ad infinitum. The 

first two steps in this construction are illustrated in figure 1. 

The issue of whether or not the limit lim �n exists is easy to settle. Consider an arbitrary radial 
n�→ 

line within the circle sector associated with �0, and the intersection of this line with �n. It should 

be clear that this intersection is unique. Let dn be the distance of this intersection from the origin 

of the radial line. Then {dn} is an increasing, bounded sequence — so it has a limit. This limit 

defines a point along the radial line. The set of all these points is the fractal �. 

11Such an orbit has to hop around rather crazily! 
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Coastline Fractal construction


θ = π/2 

Figure 1: This figure illustrates the first two steps in the construction of the coastline fractal. That 

is, the curve �0 (solid blue) and the curve �1 (solid black). The dashed red lines indicate various 

radial lines useful in the construction. 

Now do the following: 

(1) 
For each n = 0, 1, 2, 3 . . ., calculate the length φn of the curve �n. What is the “length” of �? 

(2) 
Calculate the fractal dimension (self-similar or box) of �. 

Hint: 
The first thing you will need to calculate is the “scaling” factor between �0 and each of the three 

parts that make up �1. With this scaling factor 0 < Sc = Sc(ζ) < 1, everything else follows. 

Notes: 
Real coastlines are not this simple, of course. At the very least the number of parts into which each 
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sector is divided should not be a constant (3 here), nor should the parts be equal in size, nor should 

they all subtend the same angle ζ. But further: the sectors need not be exactly circular — though, 

this is probably not a terrible approximation. 

THE END.



