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e Balancing a broom.

Statement:

Consider the problem of balancing a broom upright, by placing it on a surface that moves up and down
in some prescribed manner. Specifically:

Assume a rough flat horizontal surface, which oscillates up and down following some prescribed law
(that is, at any time the surface can be described by the equation y = Y (), where y is the vertical
coordinate, and Y is some oscillatory function). On this surface we place a broom, in upright
position, with the sweeping side pointing up.? Question: Can we prescribe Y in such a way

that the broom remains upright — i.e.: the position is stable?

In order to answer the question, consider the following idealized situation:

A) Replace the broom by a mass m, placed at the upper end of a (massless) rigid rod of length
L. Let the displacement of the rod from the vertical position be given by the angle 6, with
6 = 0 corresponding to the rod standing vertical, and the mass on the upper end.

B) The bottom of the rod is attached to a hinge that allows it to rotate in a plane. Thus the
motion of the rod is restricted to occur on a plane.

C) Assume that friction can be neglected.

D) The hinge to which the rod is attached oscillates up and down, with position z =0 and
y =Y (t) — x is the horizontal coordinate on the plane where the rod moves. The mass is

then at x = L sin(f) and y =Y + L cos(f) — we measure angles clockwise from the top.

Now, do the following:
(1) |
Use Newton’s laws to derive the equation of motion for the mass m. You should obtain a second
order ODE for the angle #, with coefficients depending on the parameters g (the acceleration of
gravity) and the length of the rod L — in addition to the forcing function Y = Y (¢).

Hint: Only two forces act on the mass m, namely: gravity and a force F' = F\(t) along the rod.
The force F' has just the right strength to keep the (rigid) rod at constant length L — this is enough

to determine F', though you do not need to calculate it.
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2Because the surface is rough, the contact point of the broom with the surface will not move relative to the surface.
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(2) |
You should notice that adding a constant velocity to the hinge motion (that is: Y — Y + v ¢, where
v is a constant) does not change the equation of motion. Why should this be so? What physical
principle is involved?
Write down the (linearized) equations for small perturbations of the equilibrium position (6 = 0)
that we wish stabilized. Stability occurs if and only if Y = Y (¢) can be selected

so that the solutions of this linear equation do not grow in time — strictly

speaking we should also consider the possible effects of nonlinearity, but we will ignore this issue here.
(4) |
You should notice that it is possible to stabilize § = 0 by taking Y = —a t?, where a > 0 is a constant
acceleration. How large does a have to be for this to happen? Give a justification of this result

based on physical reasoning, without involving any equations (this is something you should have

been able to predict before you wrote a single equation).
Of course, the “solution” found in (4) is not very satisfactory, since Y grows without bound in it.
Consider now oscillatory forcing functions of the form:

Y =/{ cos(wt), (1)

1

where ¢ > 0 and w > 0 are constants (with dimensions of length and time™"', respectively).

The objective is to find conditions

(2)
on (¢,w) that guarantee stability.

The next steps will lead you through this process, but first: Nondimensionalize the (linearized)

stability equation. In doing so it is convenient to use the time scale provided by the forcing to

nondimensionalize time — i.e.: let the nondimensional time be

This step should lead you to an equation describing the evolution of the angle 6 (valid for small

angles), involving two nondimensional parameters. One of them, | e = ¢/L, | measures the amplitude
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of the oscillations in terms of the length of the rod. The other measures the time scale of the forcing
(as given by 1/w) in terms of the time scale of the gravitational instability — a function of g and

L. Call this second parameter — note that in the equation only ;> appears, not  itself.

(6)

Find the stability range for ;1 as a function of ¢, for the values 0 < ¢ < 0.6 — it is enough

to pick a few values of ¢, say e = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and then to compute the stability range
for each of them.

Note/hint: This step will require not just analysis, but some numerical computation. So as not
to be forced to explore all possible values of © when looking for the stability ranges (numerically an
impossible task), you should notice that the analysis for e = 0 can be done exactly — and should

provide you with a good hint as to where to look.

Write the period p = 2{ of the forcing, in terms of the nondimensional parameter p, and the
parameters g and L. The results of part (6) should provide you with the period ranges (for a given
oscillation amplitude) where stability occurs. Use this information to provide a rough explanation
of why it is relatively easy to balance a broom on the palm of your hand (using the strategy outlined

in this problem — try it), and why you will not be able to balance a pencil.
For 0 <e < 1and 0 <y < 1 you should be able to obtain analytical approximations for the stable
ranges. Do so, and compare your results with those of part (6).

Hint: Floquet theory provides a function (the Floquet Trace a@ = a(pu, €)) that characterizes lin-

earized stability — stability if and only if |o| < 1. Compute this function for p and e small.

THE END.



