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� Variable Length Pendulum. 

Statement: 

Consider a pendulum (in a plane), whose arm length L > 0 c hanges in time (i.e.: L = L(t)). To 

make matters more precise: 

(a)	 Let the hinge for the pendulum be at origin in the plane: x = y = 0. 

(b)	 Let the mass M for the pendulum b e at x = L sin � and y = �L cos �, where � is the angle 

measured (counter-clockwise) from the down-rest position of the pendulum. 

(c)	 Let g b e the acceleration of gravity, and assume that frictional forces can b e neglected. 

(d)	 Assume that the mass of the pendulum arm can be neglected. 

Now do the following 

A	 Using Newton's laws, derive the equations for the pendulum.


Hint: There are two forces acting on the mass M :


{	 The force of gravity (of magnitude Mg , pointing downwards). 

{	 A force (of magnitude F = F (t)) acting along the arm of the pendulum. 

The force F is not known a-priori, but it must have the exact magnitude to keep the distance from 

the mass to the pendulum hinge at the length L = L(t). This is enough to determine this force. 

B	 Consider the following situation: you have a mass tied up at the end of a string. The string 

goes through a small hole somewhere | say, the hole at the end of a �shing rod. Now, pull 

steadily on the string, shortening the string length from the hole to the mass (do not move 

the hole while this happens). You should observe that, quite often, you end up with the 

mass going around the \�shing rod", wrapping the string there. Explain this behavior 

using the equations derived in A. (Note that real life is neither 2-D, nor frictionless: the 

equations tend to over-predict what happens). 

1 MIT, Department of Mathematics, Cambridge, MA 02139. 
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C	 Study the stability of the � = 0 equilibrium position for the pendulum. Linearize the equations 

near this solution, and obtain an equation of the form 

2 

d	 ' 

+ V (t)' = 0 ;	 (1) 

2dt

where ' = L� and V = V (t) i s some \potential" obtained from L and its derivatives. 

D	 Argue that, if L is sinusoidal, with small amplitude variations, then one can take 

V	 = 
 

2 (1 + � cos(!t )) ; (2) 

in (1), where � is small. Then (1) becomes Mathieu's equation. 

E	 Take 
 = 1 in Mathieu's equation and use Floquet theory to study the stability of the pen- 

dulum. That is, calculate (numerically) the trace of the Floquet matrix as a function of � 

and ! (say, for 0 � � � 0:3 and 0:5 � ! � 5). Note that the period to use in the calculation 

is 2� =! | i.e.: the period of V = V (t) | and that instability corresponds to � = trace=2 

having magnitude bigger than one. 

Alternatively: you can take ! = 1 , and then vary 
 and �. 

Answers: 

Answer to Part A: Derivation of the equations. 

Using Newton's law, we can write | for the position of the mass M | the equations 9 > =M �x = �F sin(�) ; 

(3) > ;M �y = +F cos(�) � M g ; 

where F = F (t) is the (unknown at this stage) force along the pendulum arm (we use the convention 

that F > 0 corresponds to tension on the pendulum arm). We also have that: 9 > =x = +L sin(�) ; 

(4) > ;y = �L cos(�) ; 

where L = L(t) is the (given) variable length of the pendulum. At this stage it is convenient to 

introduce complex notation (since it simpli�es the algebra considerably), with z = x + i y: 

Then equations (3) and (4) take the form: 

M �z = i F e 

i � � iM g ; with z = �i L e 

i � 

:	 (5) 
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_ 

2From the second equation in (5) we obtain: �z = ( �� L + 2 � 

_ L � i L 

� + i ( � 

_) L ) e 

i � (intermediate 

i �step: _z = ( � 

_ L � i L 

_ ) e ). Thus:


M (��L + 2 � 

_ L ) + iM ((�_)2 

L � 

�
_ L) = i F � iM g e 

� i � 

: (6) 

From the imaginary part of this equation we obtain a formula for F , namely: 

F = M g cos(�) + M ((�_)2 

L � 

�L) : (7) 

The real part gives the equation of motion for �, namely: 

_��L + 2 � 

_ L + g sin(�) = 0 : (8) 

Alternatively, in terms of ' = L �; this last equation can b e written in the form 

�L ' 

�'� ' + g sin( ) = 0 :	 (9) 

L L 

Remark 1 Derivation of the equations using Lagrangian Mechanics. 

Equation (8) is straightforward to derive using Lagrangians, since: 

L	 = Lagrangian 

= Kinetic Energy � Potential Energy 

M 

= ( x _ 

2 + y _ 

2 ) � gM y 

2 

M 

2 _	

2 2= ( � 

_ L + L 

_ ) + gM L cos(�) :	 (10) 

2 

Then the Euler-Lagrange equation for L  ! 

d @L @L 

� = 0 ;	 (11)
_dt @� 

@� 

is precisely equation (8). 

Answer to Part B: Steady pulling on the pendulum mass. 

In this case L = L0 

(1 � ! t ) ; where L0 

> 0 and ! > 0 are constants. Then equation (9) becomes 

' 

�'+ g sin( ) = 0 :	 (12) 

L 
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' 

Let us write this equation in nondimensional form, with � = and � = ! t . Then 

L0 

2 

d � � g 

+ 
 sin( ) = 0 ; where 
 = > 0 (13) 

2d� 

2 1 � � L0 

!

is a nondimensional parameter. Near � = 1, the general solution to this equation behaves like 

  ! Z 

1 �0 

� = �0 

+ �1 

(1 � � ) + 
 ( � � s ) sin + �1 

ds + : : : (14) 

� 

1 � s 

where �0 

and �1 

are constants. Since (generally) �0 

6= 0, it follows that 

' L0 

� �0 

1 

� = = � as t ! : (15) 

L L 1 � ! t ! 

Thus � grows unboundedly as the string is pulled. Of course: the mathematical model breaks 

down way before � = 1 can occur, but it does give an explanation for the observed behavior. 

Answer to Part C: Linearized stability equations. 

Near equilibrium, both � and ' = L � are small.2 Using (9) and linearizing, we obtain: 

g � 

�L 

�'+ V (t) ' = 0 ; where V = : (16) 

L 

Answer to Part D: Mathieu's equation. 

We now take L = L(t) sinusoidal, of the form L = L0 

(1 + Æ cos(! t )); where L0 

> 0, ! > 0 , and 

Æ are constants, with Æ small. Then 

V = 

g � 

�L 

= 

1 

� 


 

2 + Æ ! 

2 cos(! t ) 

� 

� 
 

2 (1 + � cos(! t )) (17) 

L 1 + Æ cos(! t ) 

q 

where 
 = g = L 0 

; � = Æ ! 

2 

= 
 

2 

; and we have used the fact that Æ is small. 

Let us now nondimensionalize the equations, using � = '=L0 

and � = ! t : Then 

d 

2 

� 

+ 

� 

� 

2 + Æ cos(� ) 

� 

� = 0 ; (18) 

d � 

2 

where � = 
 =! is the ratio of the angular frequencies (pendulum to forcing). 

2 Assume that L is oscillatory and stays away from zero. Thus the singular behavior studied in part (B) is avoided. 
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Answer to Part E: Floquet analysis and stability.


The stability question (are the solutions of equation (18) bounded, or do they grow?) can be decided 

using Floquet Theory. For this purpose �rst we introduce the Floquet Matrix, de�ned by: 

2 3 

� 1 

( � = 2 � ) � 2 

( � = 2 � ) 6 7 6 7 

FM 

= FM(�; Æ) = 6 d � 1 

7 ; (19)d � 24 5
(� = 2 � ) (� = 2 � ) 

d� d� 

where �1 

and �2 

are the solutions of (18) de�ned by the initial conditions (at � = 0) 

d � 1 

d � 2 

� 1 

= 1 ; = 0 ; and �2 

= 0 ; = 1 ; (20) 

d� d� 

and 2� is the period of the coeÆcients in equation (18). The Floquet Trace is then given by 

 ! 

1 1 d � 2 

FT 

= FT 

(�; Æ) = T race(FM) = � 1 

( � = 2 � ) + (� = 2 � ) : (21) 

2 2 d� 

The conditions for stability/instability are then 

jFT 

j � 1 (stability) and jFT 

j > 1 (instability) : (22) 

One of the questions we would like to answer is: can the pendulum b e de-stabilized by 

selecting the frequency and amplitude of the forcing appropriately? Of course, in general 

FT 

can only b e computed numerically. However, we note that for Æ = 0 an analytic solution is 

possible (since then equation (18) is just the linear harmonic oscillator). In this case: 

FT 

(�; 0) = cos(2�� ) ; (23) 

so FT 

(n=2; 0) = (�1)n for n a natural number. Thus, for Æ small, we should explore near 

� = n=2 to �nd ranges where the pendulum is destabilized by the forcing (FT 

is a con- 

tinuous function of its arguments). Since � = n=2 yields ! = 2
 =n, the unstable parameter values 

occur in situations where the forcing frequency is a subharmonic of twice the the unperturbed pendulum 

frequency. Why this is so can be easily understood in terms of resonances. For Æ small: 

� At leading order (0-th), the solutions to equation (18) is a sinusoidal of angular frequency �. 

� At 1-st order, the term cos(� ) � in the equation creates the frequencies � � 1 and � + 1 . 

� A t 2-nd order, the frequencies � + n, with �2 � n � 2, appear. 
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� In general, at m-th order, the frequencies � + n, with �m � n � m, appear. 

� A resonance will occur if � + n = ��, for some n. That is, if � = n=2: 

� The larger n is, the further up the expansion the resonance occurs. Thus, the instabilities that 

occur for l a rger values of n should be weaker. The �gures below con�rm this expectation: both the 

ranges where instability occurs, and the deviations there above absolute value one of FT 

, decrease 

very fast as n grows. Finally: note that a large value of � corresponds to very slow forcing. It 

is natural to expect instabilities in this regime to be very hard to produce! 

Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.1 

1  +1
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µ

Figure 1: 

Floquet Trace FT 

, for 

Æ = 0 : 1 and 0 � � � 2. 

Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.2 

1  +1
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0 

-0.5 

-1 -1 

Figure 2: 

Floquet Trace FT 

, for 

Æ = 0 : 2 and 0 � � � 2. 
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µ

Description of the Figures: 

The �gures in this problem illustrate the behavior of the Floquet Trace FT 

(�; Æ), as a function of �, 

for a sequence of increasingly larger values of (small) Æ. We note how windows of instability arise 
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Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.3 
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Figure 3: 

Floquet Trace FT 

, for 

Æ = 0 : 3 and 0 � � � 2. 

Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.4 
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Figure 4: 0 

Floquet Trace FT 

, for 

-1 -1 Æ = 0 : 4 and 0 � � � 2. 
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 Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.5 
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Figure 5: 0 

-1 
Floquet Trace FT 

, for 

-1 
Æ = 0 : 5 and 0 � � � 2. 

-2 
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near each of the critical values of � (i.e.: � = n=2), and grow in width as Æ grows. We also note 

that, for a given Æ, the windows widths decrease very fast as n gets larger. 

0 
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Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.1 
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 Floquet trace F
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(µ, δ) --- for δ = 0.2 

Figure 6: 

Floquet Trace FT 

, for 

Æ = 0 : 1 and � � 0:5. 
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Floquet Trace FT 
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Æ = 0 : 2 and � � 0:5. 
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 Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.3 
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Figure 8: 

Floquet Trace FT 

, for 

Æ = 0 : 3 and � � 0:5. 

First consider the plots of the Floquet Trace FT 

| as a function in the range 0 � � � 2 

| for the values Æ = 0 : 1 , 0 : 2 , 0 : 3 , 0 : 4 and 0:5 (see Figures 1 through 5). On this scale 

the instability window near � = 0 : 5 is clearly visible for Æ � 0:1, while the other windows (near 
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Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.4 
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Figure 9: 
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Floquet Trace FT 

, for 

-1.5 Æ = 0 : 4 and � � 0:5. 
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 Floquet trace F
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T
(µ, δ) --- for δ = 0.1 
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+1 Figure 10: 

Floquet Trace FT 

, for 

Æ = 0 : 1 and � � 1:0. 
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Figure 11: 

+1 Floquet Trace FT 

, for 

Æ = 0 : 2 and � � 1:0. 
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� = 1, 1 : 5, and 2) are too small to b e seen.3 In particular, note that by Æ = 0 : 5 the instability 

window near � = 0 : 5 has grown so much that there is no longer a stable range for � small | note 

3 These windows can be seen in the plots involving small ranges of �; see Figures 6 through 18. 
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 Floquet trace F
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Figure 12: 

Floquet Trace FT 

, for 

+1
Æ = 0 : 3 and � � 1:0. 
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Figure 13: 
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Floquet Trace FT 

, for 

0.995 Æ = 0 : 4 and � � 1:0. 
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Figure 14: 

Floquet Trace FT 

, for 

Æ = 0 : 5 and � � 1:0. 

that � small corresponds to a forcing frequency that is much faster than the natural pendulum 

frequency. A fairly large forcing amplitude is required to de-stabilize the equilibrium position under 

such conditions. 
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Floquet trace F
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Figure 15: 

-1
Floquet Trace FT 

, for 

Æ = 0 : 2 and � � 1:5. 
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Figure 16: 

-1 Floquet Trace FT 

, for 

Æ = 0 : 3 and � � 1:5. 
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Figure 17: 

-1 Floquet Trace FT 

, for 

Æ = 0 : 4 and � � 1:5. 
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Figures 6 through 9 show plots of the Floquet Trace FT 

in a neighb o rh o o d of � = 0 : 5, for the 

values Æ = 0 : 1, 0 : 2, 0:3, and 0:4. Thus these �gures show details of the lowest, and largest, 

instability window, for Æ small and � near 1=2. Note that the width of this window grows 

roughly linearly with Æ (for small Æ this can b e shown using asymptotic expansion techniques). Of 
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Floquet trace F
T
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Figure 18: 

-1
Floquet Trace FT 

, for 

Æ = 0 : 5 and � � 1:5. 

µ

course, by Æ = 0 : 5 this is no longer true, and the window is so large as to have completely absorbed 

the stable \� small" range. 

Figures 10 through 14 show plots of the Floquet Trace FT 

in a neighborhood of � = 1 : 0 , for 

the values Æ = 0 : 1, 0 : 2, 0:3, 0:4, and 0:5. This window i s m uch smaller than the � � 0:5 window, and 

it grows much more slowly. In fact, note that the width of this window grows roughly quadratically 

with Æ (for small Æ this can be shown using asymptotic expansion techniques). 

Figures 15 through 18 show plots of the Floquet Trace FT 

in a neighborhood of � = 1 : 5 , 

for the values Æ = 0 : 2, 0:3, 0:4, and 0:5. This window is still smaller than the prior ones | so 

small, in fact, that I was un-able to resolve it for Æ = 0 : 1. The width of this window grows roughly 

cubically with Æ (for small Æ this can be shown using asymptotic expansion techniques). 

Note: The �gures were done using MatLab. To calculate the Floquet Trace FT 

, the ode solver ode113 

was used to solve for the functions �1 

and �2 

. To speed up the process, the calculation was \vectorized": 

for each value of Æ, the solutions for all the calculated values of � were calculated simultaneously. 

THE END.



