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1 Problem 141002 - Computer test of two timing

Statement for problem 141002

Consider the equation
d2x

+ ε x2 dx + x = 0, (1.1)
dt2 dt

where 0 < ε� 1.
a. Derive the averaged equations.

b. Given the initial conditions x(0) = a and ẋ(0) = 0, solve the averaged equations and thereby find
an approximate formula for x = x(t, ε).

c. Solve equation (1.1 numerically for a = 1, ε = 2, and 0 ≤ t ≤ 50. Plot the results in the same graph
as your part b answer. Note how good the agreement is, even though ε is not small. In fact, most of
the error is due to a (constant) phase shift. After correcting for it, the agreement is impressive (show

this). Challenge: can you explain why the agreement is so good?

2 Problem 08.02.06 - Strogatz (Hopf bifurcation using a computer)

Statement for problem 08.02.06

For the following system

dx dy
= µx+ y − x3 and = +

dt
−x+ µ y 2y3, (2.1)

dt

1



2

a Hopf bifurcation occurs at the origin when µ = 0. Using a computer, plot the phase portrait and determine
whether the bifurcation is subcritical or supercritical. For small values of µ, verify that the limit cycle is
nearly circular. Then measure the period and radius of the limit cycle, and show that the radius R scales
with µ as predicted by theory.

3 Problem 08.07.x1 - Forced overdamped linear system

Statement for problem 08.07.x1

Strogatz’ problem 8.7.3 mentions “an overdamped linear oscillator (or an RC-circuit) forced by a square
wave”, yet the equation considered is

ẋ+ x = F (t), (3.1)

while in fact it should be
ε ẍ+ ẋ+ x = F (t), (3.2)

where 0 < ε� 1. One could argue that, because ε is small, the term ε ẍ can be neglected. Yet the problem
is concerned with the long term behavior of the system, where even small effects can become important (if
they accumulate).

The purpose of this problem is to show that, while neglecting the term ε ẍ can cause small changes, it does
not alter the qualitative conclusions of the problem. Show that (3.2) is equivalent to TWO systems of

the form (3.1)

ẋ1 + r2 x1 = F (t) and ẋ2 + r1 x2 = F (t), (3.3)

for appropriate choices of the constants rj > 0 and functions xj .
Hint. Write the equation in 2-vector form and project the solution along the eigendirections.

4 A linear center that is a nonlinear spiral.

Statement: A linear center that is a nonlinear spiral

Consider the system ẋ = −y − x3 and ẏ = x. (4.1)

For this system linearization predicts a center at the origin. However, by transforming the system into polar
coordinates, it is easy to see that the origin is actually a nonlinear spiral. Task #1: do this.

Task #2. Implement a two-time expansion for solutions near the critical point,1 and calculate the rate of
approach of the solutions towards the critical point as t → ∞. Is it exponential or algebraic? What is the
rate (if exponential) exponent (if algebraic)?

THE END.
1 The small parameter here is the radius ε of the neighborhood considered.
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