
18.404/6.840 Fall 2006 Michael Sipser 
Theory of Computation 

FINAL EXAM SAMPLE PROBLEMS and SOLUTIONS 

1. For each of the following statements, answer True, False or Open question according to our 
current state of knowledge of complexity theory, as described in class. Give brief reasons for 
your answers. 

(a) P ≤ TIME(n5) ? 

(b) NSPACE(n5) ≤ PSPACE ? 

(c) coNP ≤ PSPACE ? 

(d) NP ≤ BPP ? 

(e) P ≤ (NP ← coNP) ? 

(f) PSAT ≤ (NP → coNP) ? 

(g) CLIQUE is coNP-hard ? 

(h) ISO is NP-hard ? 

(i) TQBF is EXPSPACE-complete ? 

(j) For any languages A,B and C, if A �L B and B �L C then A �L C ? 

(k) SAT �P SAT ? 

(l) SAT �m SAT ? 

(m) TQBF �L PATH ? 

(n) HAMPATH �P PATH ? 

(o) PATH �P PATH ? 

(p) PATH �L PATH ? 

2. In this problem we let M denote a deterministic Turing machine, w a string, i and j binary 
integers, and � a member of Q→� where Q is the set of states of M and � is its tape alphabet. 

Let C = {⊆M,w, i, j, �∈| � is the ith symbol of the configuration after the jth step of the 
computation of M on input w}. 

Show that C is EXPTIME-complete. 

3. Consider the following solitaire game. You are given an m × m board where each one of the 
m2 positions may be empty or occupied by either a red stone or a blue stone. Initially, some 
configuration of stones is placed on the board. Then, for each column you must remove either 
all of the red stones in that column or all of the blue stones in that column. (If a column 
already has only red stones or only blue stones in it then you do not have to remove any 
further stones from that column.) The objective is to leave at least one stone in each row. 
Finding a solution that achieves this objective may or may not be possible depending upon 
the initial configuration. Let 

SOLITAIRE = {⊆G∈| G is a game configuration with a solution}. 

Prove that SOLITAIRE is NP-complete. 



4. Let INP = {⊆M∈| M is a deterministic TM where L(M) ∩ P}. In other words, ⊆M∈ ∩ INP 
if the language recognized by M is decidable (perhaps by some other TM) in polynomial time. 
Prove that INP is undecidable. 

5. Let ODD-PARITY = {w| w ∩ {0, 1}� and w contains an odd number of 1s}. 
Recall that PATH = {⊆G, a, b∈| there is a path from a to b in directed graph G}. 

(a) Prove that there is a log space reduction from ODD-PARITY to PATH ,

i.e., ODD-PARITY �L PATH .

(You may use any theorem we have proved in this course)


(b) No log space reduction from PATH to ODD-PARITY is known. State what surprising 
consequence would follow if such a reduction were discovered, and why. 

6. Recall the complexity class BPP, containing the languages that can be decided by probabilistic 
polynomial time Turing machines with error probability
 1

3 .
 In lecture we observed that

BPP ≤ IP and stated that IP = PSPACE. Hence we can conclude that BPP ≤ PSPACE. 

Here, give a direct proof that BPP ≤ PSPACE, without using interactive proof systems. 

7. In the standard interactive proof system model, the Prover has unlimited computational abil­
ity. Define a weak Prover to be a polynomial-time bounded Turing machine. A weak Prover 
has access to the input and to the messages that the Verifier sends, but must compute its 
responses within deterministic polynomial time. Define a weak interactive proof system 
to be an interactive proof system where a weak Prover attempts to convince the Verifier to 
accept. Let weak-IP be the associated class of languages. 

More precisely, A ∩ weak-IP if there is a probabilistic polynomial-time Verifier and a weak 
Prover P such that for any Prover P� (weak or otherwise): 
If w ∩ A then P causes the Verifier to accept with probability at least


If w ∪∩ A then P� causes the Verifier to accept with probability at most


2
3
1
3

.


.


(a) Recall the interactive proof system we gave to show that #SAT ∩ IP. 
Is the Prover which follows that protocol a weak Prover? Why or why not? 

(b) The class weak-IP is equal to another class that we have previously defined. 
What is that class? Prove your answer. 




