
SOLUTIONS


1. (a) False, hierarchy theorem.	 (b) True, Savitch’s theorem. 
(c) True, PSPACE is closed under complement. 
(d) Open, stated in lecture.	 (e) True, follows from definition. 
(f) Open, implies NP = coNP (considering language 0SAT → 1SAT );

negation implies PSPACE ∪ NP.
= 
(g) Open, equivalent to NP = coNP. (h) Open, stated in lecture. 
(i) False, implies PSPACE = EXPSPACE. (j) True, recompute bits of first reduction. 
(k) Open, equivalent to NP = coNP. (l) True, SAT is decidable. 
(m) False, implies PSPACE = NL. (n) Open, equivalent to P = NP. 
(o) True, PATH ∩ P.	 (p) True, NL = coNL. 

2. First, show that C is in EXPTIME. Here’s the algorithm: 

“On input ⊆M,w, i, j, �∈: 

1.	 Run M on w for j steps. If it halts in fewer steps, reject . 

2.	 Accept if the ith symbol of the configuration of the jth step is �. Otherwise, 
reject .” 

To analyze the running time of this algorithm, observe that to simulate one step of M we 
only need to update M ’s configuration and the counter which records how long M has been 
running. Both can be done within O(j) steps (actually much less is possible, but unnecessary 
here). We run M for at most j steps, so the total running time of this algorithm is O(j 2), and 
that is exponential in the size of the input, because j represented in binary, so |j| = log2 j 
and thus j2 = (2|j|)2 = 22|j| � 22n, where n is the length of the entire input. 

Second, we show that C is EXPTIME-hard, that is, that every language in EXPTIME is 
k 

polynomial time reducible to C. Let A ∩ EXPTIME where M decides A in time 2n . Modify 
M so that when it accepts it first moves its head to the left-hand end of the tape and 
then enters the accept state qaccept. Then the reduction of A to C is the polynomial time 

k 
computable function f , where f(w) = ⊆M,w, 1, j, qaccept ∈ and j = 2n . 

3. First, SOLITAIRE ∩ NP because we can check in polynomial time that a solution works. 

Second, show that 3SAT �P SOLITAIRE . 
Given � with k variables x1, . . . , xk and l clauses c1, . . . , cl, first remove any clauses that 
contain both xi and xi. These clauses are useless anyway and would mess up the coming

construction. Construct the following l × k game G.


If xi is in clause cj put a blue stone in row cj , column xi.

If xi is in clause cj put a red stone in row cj , column xi.

(We can make it a square m × m by repeating a row or adding a blank column as necessary

without affecting solvability).

Claim: � is satisfiable iff G has a solution.

(�): Take a satisfying assignment. If xi is true (false), remove the red (blue) stones from the

corresponding column. So, stones corresponding to true literals remain. Since every clause

has a true literal, every row has a stone.

(�): Take a game solution. If the red (blue) stones were removed from a column, set the

corresponding variable true (false). Every row has a stone remaining, so every clause has a

true literal. Therefore � is satisfied.




4. Show that ATM �m INP . 
Assume (to get a contradiction) that TM R decides INP . Construct the following TM S 
deciding ATM . 

“On input ⊆M,w∈: 

1.	 Construct the following TM M1:


“On input x:

1.	 If x ∩ EQREX�, accept . 
2.	 Run M on w. 
3.	 If M accepts w, accept .” 

4.	 Run R on M1. 

5.	 If R accepts, accept ; otherwise, reject .” 

Observe that if M accepts w, then L(M1) = ��, and if M doesn’t accept w, then L(M1) = 
EQREX�. So, L(M1) ∩ P exactly when M accepts w. 

5.	 (a) Obviously ODD-PARITY ∩ L and we know L ≤ NL. We proved that PATH is NP-
complete and so every language in NL is log-space reducible to PATH . 
Note: Giving a direct reduction from ODD-PARITY to PATH is possible too. 

(b) If	 PATH �L ODD-PARITY then PATH ∩ L and thus NL = L, solving a big open 
problem. 

6. We can assume without loss of generality that our BPP machine makes exactly nr coin tosses 
on each branch. Thus the problem of determining the probability of accepting a string reduces 
to counting how many branches are accepting and comparing this number with 3

2 2(n r ). 

So given w, we generate all binary strings x of length nr (we can do this in PSPACE) and 
simulate M on w using x as the source of randomness. If M accepts, then we increment a 
count. At the end, we see how many branches have accepted. If that number is more than 
2 2(n r ) we accept else we reject. This works because of the definition of what it means for a 3 
BPP machine to accept. If w ∩ L then more than 3

2 of M ’s branches must accept. If w ∪∩ L 
then at most 1

3 of its branches can accept. 

7.	 (a) No, the prover for #SAT is not a weak Prover, as far as we know. Calculating the 
cooeficients of the polynomials seems to require more than polynomial time. 

(b) The class weak-IP	 = BPP. Clearly, BPP ≤ weak-IP because the Verifier can simply 
ignore the Prover. Conversely, weak-IP ≤ BPP because we can make a BPP machine 
which simulates both the Verifier and the weak Prover P . If w ∩ A then P causes the 
Verifier to accept with high probability and so will the BPP machine. If w ∪∩ A then P 
causes the Verifier to accept with low probability and so will the BPP machine. 


