
Chapter 2 

Nonnegative Matrix Factorization  

In this chapter we will explore the nonnegative matrix factorization problem. We 
will first recap the motivations from this problem. Next, we give new algorithms 
that we apply to the classic problem of learning the parameters of a topic model. 

2.1 Introduction 

In order to understand why nonnegative matrix factorization is useful in applica­
tions, it will be helpful to compare it to the singular value decomposition. We will 
focus on applications of both of these to text analysis in this chapter. 

Singular Value Decomposition 

Given an m × n matrix M , its singular value decomposition is 

M = UΣV T 

where U and V are orthonormal and Σ is diagonal and its entries are nonnegative. 
Alternatively we can write 

rr 
M = uiσivi

T 

i=1 

where ui is the ith column of U , vi is the ith column of V and σi is the ith diagonal 
entry of Σ. 

Every matrix has a singular value decomposition! In fact, this representation 
can be quite useful in understanding the behavior of a linear operator or in general 
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6 CHAPTER 2. NONNEGATIVE MATRIX FACTORIZATION 

for extracting significant “features” from a large data matrix. We will focus our 
discussion of the singular value decomposition on the latter. One of the many useful 
properties of this decomposition is that we can immediately read-off the best low 
rank approximation to M from it. 

  
Definition 2.1.1 The Frobenius norm of a matrix M is IMIF = M2 Al-i,j i,j.    
ternately, if M = r

i=1 uiσivi
T , IMIF = σi 

2 . 

Consider the following optimization problem: Let B be the best rank k ap­
proximation to M in the Frobenius norm - i.e. B is the minimizer of IM − BIF 
over all rank at most k matrices. Then we can without loss of generality choose B 
to be the first k terms of the singular value decomposition. 

Theorem 2.1.2 (Eckart-Young) The best rank k approximation to M in Frobe­   k T r σ2nius norm is attained by B = uiσiv , and its error is IM−BIF = i .i=1 i i=k+1 

This is one of the reasons why the singular value decomposition is so widely 
useful: if we are given data in the form of a matrix M but we believe that the data 
is approximately low-rank, a natural approach to making use of this structure is to 
instead work with the best rank k approximation to M . This theorem is quite robust 
and holds even when we change how we measure how good B is as an approximation 
to M : 

Definition 2.1.3 The operator norm of a matrix M is IMI2 = max|v|=1 IMvI2. rThen if M = i=1 uiσivi
T , ||M ||2 = σ1 (the largest singular value). 

The best approximation to M in the operator norm is also attained by B = k T 
i=1 uiσivi , in which case the error is IM − BI2 = σk+1. 

Let us give one more interpretation of the singular value decomposition. We 
can regard an m × n matrix M as a collection of n data points in Rm . We associate 
a distribution Δ with this set of points which chooses a point uniformly at random. 
Further suppose that the expectation of this distribution is zero. Our data is in 
high dimension, and a natural question to ask is: how should we project our data 
onto a one dimensional subspace in a manner that preserves as much information 
as possible? One concrete goal is to find a direction u so that projecting Δ on u 
maximizes the variance (among all one-dimensional projections). The question leads 
to another characterization of the singular vectors: 
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IuT MI2 
u1 = argmax 

IuI2 

and the maximum is σ1. Similarly if we want to project onto a two-dimensional 
subspace so as to maximize the projected variance we should project on span(u1, u2). 
Relatedly 

IuT MI2 
u2 = minu1 argmaxu⊥u1 IuI2 

and the maximum is σ2. This is called the variational characterization of singular 
vectors. (Here we have assumed the singular values are distinct). 

There are efficient algorithms to compute the singular value decomposition. If 
n  m then these algorithms run in time O(mn2).= The basic idea is to reduce M 
to bidiagonal form using Householder reflections, and then to compute the singular 
value decomposition from this representation using the QR algorithm. Next we will 
describe an application to text analysis. 

Applications to Text Analysis 

Latent Semantic Indexing: [49] 

Suppose we are give a large collection of documents, and we would like to 
extract some hidden structure in this collection (either with the goal of performing 
information retrieval, or clustering). The usual first step is to collect the data in a 
very large, very sparse matrix: 

Definition 2.1.4 The term-by-document matrix M is an m × n matrix where each 
row represents a word, each column represents a document and the entry in row i, 
column j is the number of times that word i occurs in document j. 

We have clearly lost some information, since this representation does not take into 
account the order of the words. However matrices are much easier to work with, and 
the underlying assumption is that it should still be possible to cluster the documents 
just knowing what words each one contains but not their order. This is often called 
the bag-of-words assumption. 

The idea behind latent semantic indexing is to compute the singular value 
decomposition of M and use this for information retrieval and clustering. More 
precisely, if we write 

M ≈ U (k)Σ(k)V (k)T 

where U (k) is the first k columns of U , etc. then the columns of U (k) are the k 
directions that maximize the projected variance of a random document. These 
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vectors are interpreted as “topics”. More precisely, suppose we want to compute a 
“similarity” score for document i and document j. We could do this by computing 

�Mi,Mj � 

where Mi is the ith column of M , etc. This function “counts” the number of words 
in common. In particular, given a query we would judge how similar a document is 
to it just be counting how many of its words occur in each document. This is quite 
naive. Instead, we could compute 

U (k)��Mi
T U (k),Mj

T 

Intuitively this maps each document to a vector of length k that measures how 
much of each topic is present in the document, and computes the similarly of the 
documents by taking an inner-product in this low-dimensional space. In practice 
this is a much better way to measure similarity and was introduced by the seminal 
paper of Deerwester et al [49]. 

However it has its own weaknesses. This approach has some rather undesirable 
properties: 

(a) “topics” are orthonormal 

Consider topics like “politics” and “finance”. Are the sets of words that describe 
these topics uncorrelated? No! 

(b) “topics” contain negative values 

This is more subtle, but negative words can be useful to signal that document is 
not about a given topic. But then when we compute similarly, two documents are 
judged to be more similar based on a topic that they are both decidedly not about. 
This is another counter intuitive and undesirable property. 

Nonnegative Matrix Factorization 

The idea due to [73] and [98] is to write 

M ≈ AW 

where A and W are m × k and k × n respectively and are required to be entry-wise 
nonnegative. In fact, let us suppose that the columns of M each sum to one. It is 
not hard to see that if D is a diagonal matrix where the ith entry is the reciprocal 
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of the sum of the entries in the ith column of A then M = AA WW where AA = AD and WW = D−1W normalizes the data so that the columns of AA and of WW each sum to one. 
Hence we are finding a set of topics (the columns of AA which are each distributions 
on words) so that every document can be obtained as a convex combination of the 
topics that we have found. 

This optimization problem plays a crucial role in many machine learning sys­
tems, such as image segmentation, text analysis, recommendation systems, etc. But 
this optimization problem is NP -hard [115]. So what should we do now? Give up? 

In contrast, singular value decomposition is a problem where theory and prac­
tice agree! It can be computed efficiently, and it has many uses. But in spite of this 
intractability result, nonnegative matrix factorization really is used in practice. The 
standard approach is to use alternating minimization: 

Alternating Minimization: This problem is non-convex, but suppose we 
guess A. Then computing the nonnegative W that minimizes IM −AW IF is convex 
and can be solved efficiently. The approach is to guess A, compute the best W then 
set W as fixed and compute the best A, and so on. This process converges, but not 
necessarily to the optimal solution. 

It can and does get stuck in local minima in practice! 

We note that this approach is also called expectation-maximization [50], and is the 
standard approach not just for nonnegative matrix factorization, but for many other 
problems we will study in this course such as dictionary learning and learning mix­
tures models. 

Food for Thought 

But maybe heuristics like this are identifying interesting instances of the problem. 
The goal of this course is to not give up when faced with intractability, and to 
look for new explanations. These explanations could be new models (that avoid the 
aspects of the problem that allow us to embed hard problems) or could be identifying 
conditions under which heuristics that are already used, do work. This is a largely 
unexplored area. 

In the next section, we will ask what happens if we restrict the number of 
topics. The instances generated by [115] have k linear in m and n, but when we 
look for a set of topics that explain 300, 000 New York Times articles, we are looking 
for only a few hundred topics. So one way to reformulate the question is to ask 
what its complexity is as a function of k. We will essentially resolve this using 
algebraic techniques. Nevertheless if we want even better algorithms, we need more 
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assumptions. We will see how a geometric interpretation of this problem implies that 
these hard instances are unstable, and we will examine a condition (separability) 
that enforces stability, and allows us to give much better algorithms - ones that run 
in time polynomial in all of the parameters. 

2.2 Algebraic Algorithms 

In the previous section we introduced the nonnegative matrix factorization problem 
and described its applications to text analysis (it has many other applications). 
Vavasis proved that this problem is NP -hard in the worst-case, but the instances 
he contracted have k – the number of topics – linear in the size of the matrix [115]. 
In most practical applications, k is much smaller than m or n and with this in mind 
we will instead ask: What is the complexity of this problem as a function of k? 
We will make use of tools from algebra to give a polynomial time algorithm for any 
k = O(1). In fact, the algorithm we present here will be nearly optimal in terms of 
its dependence on k. 

Definitions 

Let us define the nonnegative matrix factorization problem formally, since we did 
so only informally in the previous section: Suppose we are given an entry-wise 
nonnegative matrix M of size m × n. 

Definition 2.2.1 The nonnegative rank of M – denoted by rank+(M)– is the small­
est k such that there are nonnegative matrices A and W of size m × k and k × n 
respectively that satisfy M = AW . 

Equivalently, rank+(M) is the smallest k such that there are k nonnegative rank 
one matrices {Mi} that satisfy M = Mi.i 

Both of these equivalent formulations of the problem will be useful throughout 
our discussion. To gain some familiarity with this parameter, it is helpful to compare 
it to a more familiar one: If we omit the requirement that A and W be entry-wise 
nonnegative, then the smallest k is precisely the rank of M . Hence the following 
relation is immediate: 

Fact 2.2.2 rank+(M) ≥ rank(M) 

In fact the rank and the nonnegative rank of a matrix can be quite different: 

∑
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Example. Let M ∈ Mn×n, where Mij = (i − j)2 . It is easy to see that the 
columns of M are spanned by ⎫⎤⎡⎤⎡⎤⎡⎧ 

1 1 12⎪⎪⎪⎨  
⎪⎪⎪⎬ ⎢⎢⎢⎣  

1  
.  .  .  

⎥⎥⎥⎦ 
,  
⎢⎢⎢⎣  
2  
.  .  .  

⎥⎥⎥⎦ 
,  
⎢⎢⎢⎣  

⎥⎥⎥⎦  
22 

.  . ⎪⎪⎪⎩  

. 
2 

⎪⎪⎪⎭ 1 n n 

It is easy to see that rank(M) = 3 However, M has zeros along the diagonal and 
non-zeros off it. Furthermore for any rank one nonnegative matrix Mi, its pattern 
of zeros and non-zeros is a combinatorial rectangle - i.e. the intersection of some set 
of rows and columns - and a standard argument implies that rank+(M) = Ω(log n). 
There are examples with even larger separations too. 

Next we will connect nonnegative matrix factorization to computational prob­
lems involving systems of polynomial inequalities. 

Systems of Polynomial Inequalities 

We can reformulate the problem of finding an A and W that prove rank+(M) ≤ k 
as a problem of finding a feasible solution to a particular system of polynomial 
inequalities. More specifically, the problem we want to solve is: 

(2.1)  

⎧ ⎪⎨ ⎪⎩  

M = AW 
A ≥ 0 
W ≥ 0 

This system consists of quadratic equality constraints (one for each entry of M), 
and linear constraints that A and W be entry-wise nonnegative. Before trying to 
design better algorithms for k = O(1), we should ask a more basic question (whose 
answer is not at all obvious): 

Question 3 Is there any finite time algorithm? 

The difficulty is that even if there is a solution, the entries of A and W could be 
irrational. This is quite different than, say, 3-SAT where there is a simple brute-force 
algorithm. In contrast for nonnegative matrix factorization it is quite challenging 
to design algorithms that run in any finite amount of time. But indeed there are 
algorithms (that run in some fixed amount of time) to decide whether a system 
of polynomial inequalities has a solution or not in the real RAM model. These 
algorithms can also compute an implicit representation of the solution, if there is 
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one. The output is a polynomial and an interval (for each variable) in which there 
is only one root, which is the value of the variable in the true solution. And you can 
find as many bits of the solution as you would like by performing binary search for 
the root. 

The first algorithm follows from the seminal work of Tarski, and there has 
been a long line of improvements based on successively more powerful algebraic 
decompositions. This line of work culminated in algorithms whose running time is 
exponential in the number of variables but is polynomial in all the other parameters 
of the problem (the number of polynomial inequalities, the maximum degree and 
the bit complexity of the coefficients). The running time is (nD)O(r) where n is the 
number of polynomial inequalities, D is the maximum degree and r is the number of 
variables [106]. This running time is essentially optimal under the exponential time 
hypothesis [78]. In particular, if there is an algorithm for this problem that runs in 
time (pD)o(r) then it would yield sub-exponential time algorithms for 3-SAT. 

We can use these algorithms to solve nonnegative matrix factorization. How­
ever the number of variables we would need in the naive representation is nk + mk, 
one for each entry in A or W . So even if k = O(1), we would need a linear number of 
variables and the running time would be exponential. However we could hope that 
even though the naive representation uses many variables, perhaps there is a more 
clever representation that uses many fewer variables. Can we reduce the number of 
variables in the system of polynomial inequalities from O(nk + mk) to f(k)? 

If we could do this, then we could solve nonnegative matrix factorization in 
polynomial time for any k = O(1). Next, we will describe some basic tools in the 
first-order theory of the reals. These results will help formalize our intuition from 
above that the number of variables is the right complexity measure when reasoning 
about how difficult it is to solve a system of polynomial inequalities, but their proof 
is out of scope of this course. 

First-Order Theory of the Reals 

Definition 2.2.3 A set S is semialgebraic if there exist multivariate polynomials 
p1, ..., pn such that 

S = {x1, ..., xr|pi(x1, ..., xr) ≥ 0} 

or if S is a finite union or intersection of such sets. 

Definition 2.2.4 The projection of a semialgebraic set S is defined as 

projS (X1, ..., X�) = {x1, ..., x�|∃ x�+1, ..., xr such that p(x1, ..., xr) ∈ S} 
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Theorem 2.2.5 (Tarski) The projection of a semialgebraic set is semialgebraic. 

This is one of the foundational results in the field, and is often called quantifier 
elimination [110], [107]. To gain some familiarity with this notion, consider the 
case of algebraic sets (defined analogously as above, but with polynomial equality 
constraints instead of inequalities). Indeed, the above theorem implies that the 
projection of an algebraic set is itself semi-algebraic. Is its projection also algebraic? 
No (e.g. think about the projection of a circle)! 

Earlier, we stated that there are algorithms to solve systems of polynomial 
inequalities (and find an implicit representation for the solution, if there is one) in 
time (nD)O(r) where n is the number of polynomial inequalities, D is the maximum 
degree and r is the number of variables [106]. In fact, these algorithms work in a more 
general setting where there is additionally a boolean function B that constraints the 
sign pattern of the polynomials. We are interested in deciding whether the set 

S = {x1, ..., xr|B(p1(x1, ..., xr), ..., pn(x1, ..., xr)) = true} 

is non-empty, and we assume that we can evaluate B (but not, say, that it has a 
succinct circuit). A related result is the famous Milnor-Warren bound (see e.g. [7]): 

Theorem 2.2.6 (Milnor-Warren) Given n polynomials p1, ..., pm of degree ≤ D 
on r variables x = x1, ...xr, consider the sign pattern at x:   

x → sgn(p1(x)), sgn(p2(x)), ..., sgn(pm(x))

Then as x ranges over Rr the number of distinct sign patterns is at most (nD)r . 

A priori we could have expected as many as 3n sign patterns. In fact, algorithms 
for solving systems of polynomial inequalities are based on cleverly enumerating the 
set of sign patterns so that the total running time is dominated by the maximum 
number of distinct sign patterns that there could be! In fact, the Milnor-Warren 
bound can be thought of as an analogue of the Sauer-Shelah lemma that is used 
throughout supervised learning where the number of variables plays the role of the 
V C-dimension. 

Next we will give a technique to reduce the number of variables. 

Variable Reduction 

It is clear that the set of points satisfying (2.1) is a semialgebraic set. However even 
for k = 3 this system has a linear (in n and m) number of variables, so directly 
solving (2.1) would require exponential time. 
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Question 4 Can we find an alternate system of polynomial inequalities that ex­
presses the same decision problem but uses many fewer variables? 

We will focus on a special case called simplicial factorization where rank(M) = k. 
In this case, we are asking whether or not rank+(M) = rank(M) = k and this 
simplifies matters because of the following observation: 

Claim 2.2.7 In any solution, A and W must have full column and row rank respec­
tively. 

Proof: The span of the columns of A must contain the columns of M and similarly 
the span of the rows of W must contain the rows of M . Since rank(M) = k and 
A and W have k columns and rows respectively we conclude that the A and W 
must have full column and row rank respectively. Moreover their span must be the 
column space and row space of M respectively. • 

Hence we know that A and W have left and right pseudo-inverses A+ and W + 

respectively. We will make use of these pseudo-inverses to reduce the number of 
variables in our system of polynomial inequalities: We have that A+A = Ir where 
Ik is the k × k identity. Hence 

A+AW = W 
and so we can recover the columns of W from a linear transformation of the columns 
of M . This leads to the following alternative system of polynomial inequalities: 

(2.2)  

⎧ ⎪⎨ ⎪⎩  

MW +A+M = M 
MW + ≥ 0  
A+M ≥ 0 

A priori, it is not clear that we have made progress since this system also has 
nk + mk variables corresponding to the entries of A+ and W + . However consider 
the matrix A+M . If we represent A+ as an k × n matrix then we are describing 
its action on all vectors, but the crucial observation is that we only need to know 
how A+ acts on the columns of M which span a k dimensional space. Hence we can 
apply a change of basis to rewrite M as MR which is an k × m matrix, and there 
is an k × k linear transformation T (obtained from A+ and the change of basis) so 
that TMR = W . A similar approach works for W , and hence we get a new system: ⎧ ⎪⎨ ⎪⎩  

MC ST MR = M 
(2.3)  MC S ≥ 0  

TMR ≥ 0  
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The variables of this system are the entries in S and T . So there are 2k2 

variables. And the properties we need of this system are that 

(a) If the simplicial factorization problem has a solution, then there is a solution 
to this system (completeness) 

(b) If there is any solution to the system, then the simplicial factorization has a 
solution (soundness) 

We have already proven the first property, and the second property follows 
because we can set A = MC S and W = TMR and this is a valid factorization with 
inner-dimension k. Hence if we apply Renegar’s algorithm to this new system, the 
algorithm runs in time (nm)O(k2) and solves the simplicial factorization problem. 

The above approach is based on the paper of Arora et al [13] where the authors 
also give a variable reduction procedure for nonnegative matrix factorization (in the 
general case where A and W need not have full column or row rank respectively). 
The authors reduce the number of variables from (nk + mk) to f(k) = 2k22k and 
this yields a doubly-exponential time algorithm as a function of k. The crucial 
observation is that even if A does not have full column rank, we could write a system 
of polynomial inequalities that has a pseudo-inverse for each set of its columns that 
is full rank (and similarly for W ). However A could have as many as 

k/
k 
2 maximal 

sets of linearly independent columns, and hence the resulting system of polynomial 
inequalities has f(k) variables but f(k) is itself exponential in k. 

In [94] the author further reduces the number of variables to 2k2 for nonneg­
ative matrix factorization, and the main idea is that even though A could have 
exponentially many maximal sets of linearly independent columns, their psueudo­
inverses are algebraically dependent and can be expressed over a common set of k2 

variables using Cramer’s rule. This yields a singly exponential time algorithm for 
nonnegative matrix factorization that runs in (nm)O(k2) time which is essentially op­
timal since any algorithm that runs in time (nm)o(k) would yield a sub-exponential 
time algorithm for 3-SAT [13]. 

2.3 Stability and Separability 

In the previous section we took an algebraic approach and here instead we will work 
with an assumption called separability [54] which will allow us to give an algorithm 
that runs in polynomial time (even for large values of r). Our discussion will revolve 
around the intermediate simplex problem. 

( )
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Intermediate Simplex Problem 

Let us define the intermediate simplex problem: 

We are given two polytopes Q and P with P ⊆ Q and furthermore P is 
encoded by its vertices and Q is encoded by its facets. Is there a simplex 
K with P ⊆ K ⊆ Q? 

We would like to connect this problem to nonnegative matrix factorization, since 
it will help us build up a geometric view of the problem. Consider the following 
problem: 

Given nonnegative matrices M and A, does there exists W ≥ 0 such 
that M = AW ? 

The answer is “Yes”, if and only if each column of M is in the cone spanned 
by nonnegative combinations of the columns of A. Moreover if we normalize the 
columns of M and A so that they sum to one, then the answer is “Yes” if and only if 
the convex hull of the columns of A contains the columns of M . Recall in simplicial 
factorization we are given a nonnegative matrix M with rank(M) = k, and our 
goal is to decide whether or not rank+(M) = k. We will prove that the simplicial 
factorization problem and the intermediate simplex problem are equivalent [115]. 
Consider the following helper problem, which we call (P0): 

Given M = UV , is there an invertible k × k matrix T such that UT −1 , 
and TV are nonnegative? 

In fact, Vavasis [115] proved that (P0), intermediate simplex and the simplicial 
factorization problem are each polynomial time interreducible. It is easy to see 
that (P0) and the simplicial factorization problem are equivalent since in any two 
factorizations M = UV or M = AW (where the inner-dimension equals the rank of 
M), the column spaces of M , U and A are identical. Similarly the rows spaces of 
M , V and W are also identical. 

The more interesting aspect of the proof is the equivalence between (P0) and 
the intermediate simplex problem. The translation is: 

(a) rows of U ⇐⇒ vertices of P 

(b) rows of T ⇐⇒ vertices of K 

(c) columns of V ⇐⇒ facets of Q 
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Figure 2.1: This figure is taken from [115]. The intermediate simplex problem has 
two solutions which will be used to encode the truth assignment of a variable. 

Then the constraint that UT −1 is nonnegative is (roughly) the constraint that P ⊆ K 
and the constraint TV is (roughly) the constraint K ⊆ Q. There are some tedious 
normalization issues that arise since we need to be careful about the distinction 
between the convex hull of a set of vectors and the cone generated by all nonnegative 
combinations. However this equivalence gives us a geometric view that will be 
helpful. 

Vavasis made use of the equivalences in the previous subsection to prove that 
nonnegative matrix factorization is NP -hard. Consider the gadget in Figure 2.1; 
the crucial property is that there are only two possible intermediate triangles, which 
can then be used to represent the truth assignment for a variable xi. The description 
of the complete reduction, and the proof of its soundness are involved (see [115]). 

The trouble is that gadgets like those in Figure ?? are unstable. We can change 
the number of solutions by small perturbations to the problem. Motivated by issues of 
uniqueness and robustness, Donoho and Stodden [54] introduced a condition called 
separability that alleviates many of these problems, which we will discuss in the next 
subsection. 

Separability 

Definition 2.3.1 We call A separable if, for every column of A, there exists a row 
of A whose only non-zero entry is in that column. 
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Furthermore in the separable nonnegative matrix factorization problem we are 
given M and the promise that if there is a nonnegative matrix factorization, there is 
one in which A is separable. Donoho and Stodden used this condition (and others) 
to show that there are somewhat natural conditions under which the nonnegative 
matrix factorization is unique. Arora, Ge, Kannan and Moitra gave an algorithm 
for finding it: 

Theorem 2.3.2 [13] Given a nonnegative matrix M with the promise that there is 
a nonnegative matrix factorization M = AW where A is separable, there is a polyno­
mial time algorithm to compute such a factorization of minimum inner-dimension. 

In fact, separability is quite natural in the context of text analysis. Recall that 
we interpret the columns of A as topics. We can think of separability as the promise 
that these topics come with anchor words; informally, for each topic there is an 
unknown anchor word that if it occurs in a document, the document is (partially) 
about the given topic. For example, 401k could be an anchor word for the topic 
personal finance. 

Why do anchor words help? It is easy to see that if A is separable, then the 
rows of W appear as rows of M (after scaling). Hence we just need to determine 
which rows of M correspond to anchor words. We know from our discussion in 
Section 2.3 that (if we scale M , A and W so that their rows sum to one) the convex 
hull of the rows of W contain the rows of M . But since these rows appear in M as 
well, we can try to find W by iteratively deleting rows of M that do not change its 
convex hull. 

Let M i denote the ith row of M and let M I denote the restriction of M to 
the rows in I for I ⊆ [n]. So now we can find the anchor words using the following 
simple procedure: 

Find Anchors [13] 
Input: matrix M ∈ Rn×m satisfying the conditions in Theorem 2.3.2  
Output: W = M I  

Set I = [n]  
For i = 1, 2, ..., n  

If M i ∈ conv({M j |j ∈ I, j = i}), set I ← I − {i}
End 

It is easy to see that deleting a row of M that is not an anchor word will not 
change the convex hull of the remaining rows, and so the above algorithm terminates 

6=
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with a set I that only contains anchor words. Moreover at termination 

conv({M i|i ∈ I}) = conv({M j }j ) 

Alternatively the convex hull is the same as at the start. Hence the anchor words 
that are deleted are redundant and we could just as well do without them. 

Separable NMF [13] 
Input: matrix M ∈ Rn×m satisfying the conditions in Theorem 2.3.2 
Output: A, W 

Run Find Anchors on M , let W be the output 
Solve for nonnegative A that minimizes IM − AW IF (convex programming) 
End 

The proof of theorem follows immediately from the proof of correctness of 
Find Anchors and the fact that conv({M i}i) ⊆ conv({W i}i) if and only if there 
is a nonnegative A (whose rows sum to one) with M = AW . 

The above algorithm when naively implemented would be prohibitively slow. 
Instead, there have been many improvements to the above algorithm [27], [84] [65], 
and we will describe one in particular that appears in [12]. Suppose we choose a 
row M i at random. Then it is easy to see that the furthest row from M i will be an 
anchor word. 

Similarly, if we have found one anchor word the furthest row from it will be 
another anchor word, and so on. In this way we can greedily find all of the anchor 
rows, and moreover this method only relies on pair-wise distances and projection 
so we can apply dimension reduction before running this greedy algorithm. This 
avoids linear programming altogether in the first step in the above algorithm, and 
the second step can also be implemented quickly because it involves projecting a 
point into an k − 1-dimensional simplex. 

2.4 Topic Models 

Here we will consider a related problem called topic modeling; see [28] for a compre­
hensive introduction. This problem is intimately related to nonnegative matrix fac­
torization, with two crucial differences. Again there is some factorization M = AW 
but now we do not get access to M but rather WM which is a very crude approxi­
mation. Intuitively, each column in M is a document that is itself a distribution on 
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words. But now the words that we observe are samples from this distribution (so 
we do not actually know the columns of M). 

The second difference is that we think of W as stochastically generated. There 
are in fact many popular choices for this distribution: 

(a)	 Pure Documents: Each document is about only one topic, hence each col­
umn of W has exactly one non-zero. 

(b)	 Latent Dirichlet Allocation [30] : The columns of W are generated from 
a Dirichlet distribution. 

(c)	 Correlated Topic Model [29] : Certain pairs of topics are allowed to be 
positively or negatively correlated, and the precise distribution that generates 
the columns of W is log-normal. 

(d)	 Pachinko Allocation Model [89] : This is a multi-level generalization of 
LDA that also allows for certain types of structured correlations. 

WM . 
emphasize the differences, note that even if we knew A we cannot compute W 
There are many more choices. Regardless, our goal is to learn A from To  

exactly. Alternatively, WM and M can be quite different since the former may be 
sparse while the latter is dense. Are there provable algorithms for topic modeling? 

The Gram Matrix 

We will follow an approach of Arora, Ge and Moitra [14]. At first this seems like a 
fundamentally different problem than the ones we have considered because in this 
model we cannot ask for longer documents, we can only ask for more of them. Hence 
we are increasing the number of columns of WM but each column is not that close to 
the corresponding column in M . The basic idea is to work instead with the Gram 
matrix G: 

Definition 2.4.1 Let G denote the word × word matrix whose entry in (a, b) is 
the probability that the first two words in a randomly chosen document are a and b 
respectively. 

Definition 2.4.2 Let R denote the topic × topic matrix whose entry in (i, j) is 
the probability that the first two words (again in a randomly chosen document) are 
generated from the topics i and j respectively. 
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Note that we can approximate G from our samples, however we cannot (di­
rectly) approximate R and it is controlled by the choice of which distribution we 
use to generate the columns of W . More precisely: 

Lemma 2.4.3 G = ARAT 

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and similarly 
for w2). We can expand P[w1 = a, w2 = b] as: r 

P[w1 = a, w2 = b|t1 = i, t2 = j]P[t1 = i, t2 = j] 
i,j 

and the lemma is now immediate. • 

The key observation is that G has a separable nonnegative matrix factorization 
given by A and RAT since A is separable and the latter matrix is nonnegative. Indeed 
if RAT has full row rank then the algorithm in Theorem 2.3.2 will find the true set 
of anchor words. However since the rows of RAT are no longer normalized to sum to 
one, the above factorization is not necessarily unique. Nevertheless we have made 
some progress, and we can adopt a Bayesian interpretation (see [12]). 

Recovery via Bayes Rule 

In fact, the entries of A are conditional probabilities P(w1|t1) and so we can reason 
about the posterior distribution P(t1|w1). In fact this gives us an alternate charac­
terization of an anchor word: A word is an anchor word if and only if its posterior 
distribution is supported on just one topic. In particular 

1, w is an anchor word for t,
P(t1 = t|w1 = w) = 

0, otherwise, 

Now we can expand: r 
P (w1 = w '|w2 = w) = P(w1 = w '|w2 = w, t2 = t) · P(t2 = t|w2 = w), 

t 

In fact w1 is independent of w2 if we condition on t2 and so: 

P(w1 = w'|w2 = w, t2 = t) = P(word1 = w'|topic2 = t) 
= P(word1 = w'|word2 = anchor(t)), 
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which we can compute from G after having determined the anchor words. Hence: r 
P(w1 = w ' |w2 = w) = P(word1 = w ' |word2 = anchor(t))P(t2 = t|w2 = w) 

t 

which we can think of a linear systems in the variables {P(t2 = t|w2 = w)}. It is 
not hard to see that if R has full rank then it has a unique solution. Finally, we 
compute the probabilities we were originally interested in by Bayes’ rule: 

P(topic t|word w) · P(word w)
P(word w|topic t) = 

P(topic t) 
P(topic t|word w) · P(word w) 

= . 
w' P(topic t|word w ') · P(word w ') 

AWe can now state the algorithm Recover. Let G be the empirical Gram matrix, Awhere Ga,b is the fraction of documents in our sample whose first word is a and 
whose second word is b. 

Suppose each anchor word has probability at least p. Then the main result in 
this subsection is: 

Theorem 2.4.4 [14] For any separable topic model where R is full rank there is Aa polynomial time algorithm to compute A that is ε-close to A and the running 
time and sample complexity (number of documents) is poly(n, 1/p, 1/ε, 1/σmin(R)), 
provided documents have length at least two. 

In the next subsection we describe some experimental results. 

Recover [14], [12] 
Input: term-by-document matrix M ∈ Rn×m 

Output: A, R 

Compute GA, compute P(w1 = w|w2 = w ' ) 
Run Find Anchors 
Solve for P(topic t|word w) and use Bayes’ rule to compute A 
End 

Experiments 

We are faced with a basic scientific question now: Are there really anchor words? 
The following experiment was conducted in [12]: 

∑
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(a) Run MALLET (a popular topic modeling toolkit) on a collection of New York 
Times articles, its output is a topic matrix A. 

(b) Use A to generate data from a topic model, run MALLET on this data. 

The important point is that here the data that we are running on is actually from a 
topic model and we can compare how well one algorithm can recover the true matrix 
compared to how well another algorithm does. Then: 

(c) Run the new algorithm on this data. 

This is a seemingly unfair comparison, since we have restricted ourselves to a 
topic matrix A that MALLET has already found once (so this is our notion of what 
constitutes a realistic topic model). Yet surprisingly the algorithm in the previous 
subsection was able to find the topic matrix A more accurately and orders of mag­
nitude faster! This is an important example where finding conditions under which 
we can give provable algorithms indeed led to much better algorithms in practice. 
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