
Chapter 3 

Tensor Methods 

In this chapter we will study algorithms for tensor decompositions and their appli­
cations to statistical inference. 

3.1 Basics 

Here we will introduce the basics of tensors. A matrix is an order two tensor – it is 
indexed by a pair of numbers. In general a tensor is indexed over k-tuples, and k is 
called the order of a tensor. We can think of a tensor T as a point in Rn1×n2×...×nk . 
We will mostly be interested in order three tensors throughout this chapter. If T is 
an order three tensor of size m × n × p we can regard T as a collection of p matrices 
of size m × n that are stacked on top of each other. 

We can generalize many of the standard definitions from linear algebra to the 
tensor setting, however we caution the reader that while these parameters are easy 
to compute for matrices, most parameters of a tensor are hard to compute (in the 
worst-case). 

Definition 3.1.1 A rank one tensor is a tensor of the form T = u ⊗ v ⊗ w where 
Ti,j,k = uivj wk. And in general the rank of a tensor T is the minimum r such that 
we can write T as the sum of r rank one tensors. 

Question 5 Tensors are computationally more difficult to work with; so why should 
we try to work with them? 

In fact, we will give a motivating example in the next section that illustrates the 
usefulness of tensor methods in statistics and machine learning (and where matrices 
are not sufficient). 
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Case Study: Spearman’s Hypothesis 

Charles Spearman was a famous psychologist who postulated that there are essen­
tially two types of intelligence: mathematical and verbal. In particular, he believed 
that how well a student performs at a variety of tests depends only on their intrinsic 
aptitudes along these two axes. To test his theory, he set up a study where a thou­
sand students each took ten various types of test. He collected these results into a 
matrix M where the entry Mi,j was used to denote how well student i performed on 
test j. Spearman took the best rank two approximation to M . In other words, that 

∈ R1000there exists vectors (not necessarily unit vectors) u1, u2 , v1, v2 ∈ R10, such 
that 

M ≈ u1v	 T + u2v T 
1 2 

This is called factor analysis, and his results somewhat confirmed his hypothesis. 
But there is a fundamental obstacle to this type of approach that is often referred 
to as the “Rotation Problem”. Set U = [u1, u2] and V = [v1, v2] and let O be an 
orthogonal matrix. Then 

UV T = UO OT V T 

is an alternative factorization that approximates M just as well. However the 
columns of UO and the rows of OT V T could be much less interpretable. To summa­
rize, just because there is a good factorization of a given data matrix M does not 
mean that factor analysis will find it. 

Alternatively, suppose we are given a matrix M = r xiy
T .i=1 i 

Question 6 Can we determine {xi}i and {yi}i if we know M? 

Actually, there are only trivial conditions under which we can uniquely determine 
these factors. If r = 1 of if we know for a priori reasons that the vectors {xi}i and 
{yi}i are orthogonal, then we can. But in general we could take the singular value 
decomposition of M = UΣV T and take {σiui}i and {vi}i to be an alternative set 
of factors that explain M (and if {xi}i and {yi}i are not orthogonal, then these are 
clearly two different sets of factors for the same M). 

However if we are given a tensor 
rr 

T = xi ⊗ yi ⊗ wi 
i=1 

then there are general conditions (namely if {xi}i, {yi}i and {wi}i are each linearly 
independent) not only is the true factorization the unique factorization of T with 
rank r but in fact there are simple algorithms to find it! This is precisely the reason 
that tensor methods are ubiquitous in statistics and machine learning: If we are 

∑
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given a tensor whose factors represent the parameters of a statistical model, we can 
find these factors efficiently; yet for matrices the factors are not uniquely determined. 

Complexity of Tensor Problems 

In the previous subsection, we alluded to the fact that tensor methods will offer a 
way around the “Rotation Problem” which is a common obstacle in factor analysis. 
So can we just compute the minimum rank decomposition of a tensor? In fact, not 
only is this problem computationally hard (without further assumptions) but most 
tensor problems are hard [71]! Even worse, many of the standard relations in linear 
algebra do not hold and even the definitions are in some cases not well-defined. 

(a) For	 a matrix A, dim(span({Ai}i)) = dim(span({Aj }j )) (the column rank 
equals the row rank). 

However no such relation holds for tensors. 

(b) For a matrix A, the best rank k approximation to A can be obtained from its 
best rank k + 1 approximation. 

In particular, if we let A(k+1) be the best rank k + 1 approximation to A, then the 
best rank k approximation to A(k+1) is the best rank k approximation to A. But for 
tensors the best rank k and rank k + 1 approximations do not necessarily share any 
common rank one factors. In fact, subtracting the best rank one approximation to 
a tensor T from it can actually increase its rank. 

(c) For a real-valued matrix its rank over R and over C are the same, but this is 
false for tensors. 

There are real-valued tensors whose minimum rank decomposition requires complex 
numbers. 

Perhaps the most worrisome issue is that in some cases the definitions fail too: 

Definition 3.1.2 The border rank of a tensor T is the minimum r such that for 
any ε > 0 there is a rank r tensor that is entry-wise ε close to T . 

We remark that what norm we use in the above definition is not important. In 
fact, for matrices the border rank is equal to the rank. But for tensors these can be 
different. 
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(d) For a tensor, its border rank is not necessarily equal to its rank. 

Consider the following 2 × 2 × 2 tensor T , over R:       
0 1 1 0 

T = , . 
1 0 0 0

We will omit the proof that T has rank 3, but show that T admits an arbitrarily 
close rank 2 approximation. Consider the following matrices             

1 n 1 1 n 0 0 0 
Sn = , n 

1 and Rn = , .1 11 0 0 0 02n n n

1 1 1It is not too hard to see that Sn = n ⊗ ⊗ , and hence is rank 1, and 1/n 1/n 1/n 
Rn is also rank 1. Thus the tensor Sn − Rn is rank 2, but also is an 1/n entry-wise 
approximation of T . 

One last issue is that it is easy to see that a random n × n × n tensor will have 
rank Ω(n2), but it is unknown how to explicitly construct any order three tensor 
whose rank is Ω(n1+ε). And any such construction would give the first super-linear 
circuit lower bounds for any explicit problem [102] which is a long-standing open 
question in circuit complexity. 

Jennrich’s Algorithm 

While we cannot hope for algorithms that find the minimum rank decomposition of 
a tensor in general, in fact there are mild conditions under which we can do it. This 
algorithm has been rediscovered numerous times in a wide range of applications, and 
after an extensive search we discovered that this simple algorithm was first reported 
in a working paper of Harshman [70] where the author credits Dr. Robert Jennrich. 
We will state and prove a version of this result that is more general, following the 
approach of Leurgans, Ross and Abel [87]: 

Theorem 3.1.3 [70], [87] Consider a tensor 

rr 
T = ui ⊗ vi ⊗ wi 

i=1 

where each set of vectors {ui}i and {vi}iare linearly independent, and moreover each 
pair of vectors in {wi}i are linearly independent too. Then the above decomposition 
is unique up to rescaling, and there is an efficient algorithm to find it. 

( ) ( ) ( )
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We will see a wide variety of applications of this basic result (which may ex­
plain why it has been rediscovered so many times) to phylogenetic reconstruction 
[96], topic modeling [8] and community detection [9]. This decomposition also plays 
a crucial role in learning mixtures of spherical Gaussians [75] and independent com­
ponent analysis [36], although we will instead present a local search algorithm for 
the latter problem. 

Tensor Decomposition [70], [87] 
Input: tensor T ∈ Rm×n×p satisfying the conditions in Theorem 3.1.3 
Output: factors {ui}i, {vi}i and {wi}i 

Choose a, b ∈ Sp−1 uniformly at random; set Ta = T (∗, ∗, a) and Tb = T (∗, ∗, b) 

Compute the eigendecomposition of Ta(Tb)+ and Tb(Ta)+ 

Let U and V be the eigenvectors 
Pair up ui and vi iff their eigenvalues are reciprocals 

Solve for wi in T = i
r 
=1 ui ⊗ vi ⊗ wi 

End 

Recall that Ta is just the weighted sum of matrix slices through T , each weighted 
by ai. It is easy to see that: 

r T r TClaim 3.1.4 Ta = wi, a uivi and Tb = wi, b uivii=1 i=1 

Alternatively, let Da = diag({� wi, a �}i) and let Db = diag({� wi, b �}i). Then we can 
write Ta = UDaV T and Tb = UDbV T where the columns of U and V are ui and vi 
respectively. 

Lemma 3.1.5 The eigenvectors of Ta(Tb)+ and Tb(Ta)+ are U and V respectively 
(after rescaling) 

Proof: We can use the above formula for Ta and Tb and compute 

Ta(Tb)
+ = UDaDb 

+U+ 

D+Then almost surely over the choice of a and b we have that the diagonals of Da b 
will be distinct – this is where we use the condition that each pair of vectors in {wi}i 
is linearly independent. 

∑

∑ ∑
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Hence the above formula for Ta(Tb)+ is an eigendecomposition, and moreover 
it is unique because its eigenvalues are distinct. We conclude that the eigenvectors 
of Ta(Tb)+ are indeed the columns of U up to rescaling, and similarly for V . • 

Now to complete the proof of the theorem, notice that ui and vi as eigen­
vectors of Ta(Tb)+ and Tb(Ta)+ respectively, have eigenvalues of (Da)i,i(Db)

−1 andi,i 
)−1 (Again, the diagonals of Da(Db)

+ are distinct almost surely and so 
vi is the only eigenvector that ui could be paired with). Since we only have the 
factors ui × vi up to scaling, we will need to push the rescaling factor in with wi. 
Nevertheless we just need to prove that linear system over the wi’s does not have 
more than one solution (it certainly has one). 

(Db)i,i(Da i,i . 

Definition 3.1.6 The Khatri-Rao product ⊗KR between two matrices U and V 
with the same number of columns is  

U ⊗KR V = ui ⊗ vi 
i 

That is the Khatri-Rao product of U and V of size m × r and n × r is an mn × r 
matrix whose ith column is the tensor product of the ith column of U and the ith 
column of V . The following lemma we leave as an exercise to the reader: 

Lemma 3.1.7 If U and V are size m × r and n × r and have full column rank and 
r ≤ m + n − 1 then U ⊗KR V has full column rank too. 

This immediately implies that the linear system over the wi’s has a unique solution. 
This completes the proof of the theorem. 

Note that if T is size m×n×p then the conditions of the theorem can only hold 
if r ≤ min(m, n). There are extensions of the above algorithm that work for higher 
order tensors even if r is larger than any of the dimensions of its factors [48], [66], 
[26] and there are interesting applications to overcomplete independent component 
analysis [66] and learning mixtures of many Gaussians [26], [11]. 

In the next section, we will show that the above algorithm is stable – in all of 
the applications in learning we will estimate T from our samples and hence we do 
not have T exactly. 

3.2 Perturbation Bounds 

In the last section, we gave an algorithm for tensor decomposition when the fac­
tors are full-rank, and in this setting its decomposition is unique (up to rescaling). 
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However in all of our applications we will not be given T exactly but rather we will 
compute an approximation to it from our samples. Our main goal in this section is 
to show that even in the presence of noise, the algorithm in Theorem 3.1.3 recovers 
factors close to the true factors. In later sections, we will simply assume we are given 
the true tensor T and what we present here is what justifies this simplification. 

This section is somewhat technical, and the reader can feel free to skip it. 

Recall that the main step in Theorem 3.1.3 is to compute an eigendecompo­
sition. Hence our first goal is to establish conditions under which the eigendecom­
position itself is stable. More precisely, let M = UDU−1, where D is a diagonal 
matrix. If we are given W= M + E, when can we recover good estimates to U?M 

Intuitively, if any of the diagonal entries in D are close or if U is ill-conditioned, 
then even a small perturbation E can drastically change the eigendecomposition. We 
will prove that these are the only things that can go wrong. There will be two main 
steps. First we need to prove that WM is diagonalizable, and then we can show that 
the matrix that diagonalizes it must be close to the one that diagonalizes M . 

Condition Number 

Definition 3.2.1 The condition number of a matrix M is defined as 

σmax(M)
κ(M) := ,

σmin(M) 

where σmax(M) and σmin(M) are the maximum and minimum singular values of M , 
respectively. 

Consider the basic problem of solving for x in Mx = b. Suppose that we are 
given M exactly, but we only know an estimate Ab = b + e of b. Here e is an error 
term. By solving the equation Mx = b using Ab instead of b, we obtain an estimate 
xA for x. How close is xA to x? 

We have xA = M−1Ab = x + M−1e = x + M−1(Ab − b). So 

Ix − xAI ≤ 
1 Ib − AbI. 

σmin(M) 

Since Mx = b, we also have IbI ≤ σmax(M)IxI. It follows that 

Ix − xAI σmax(M) Ib − AbI Ib − AbI ≤ = κ(M) . 
IxI σmin(M) IbI IbI 

In other words, the condition number controls the relative error when solving a linear 
system. 



 

  

32 CHAPTER 3. TENSOR METHODS 

Gershgorin’s Disk Theorem 

Recall our first intermediate goal is to show that M + E is diagonalizable, and we 
will invoke the following theorem: 

Theorem 3.2.2 The eigenvalues of a matrix M are all contained in the following 
union of disks in the complex plane: 



n
D(Mii, Ri) 

i=1 

where D(a, b) := {x | Ix − aI ≤ b} ⊆ C and Ri = j=i |Mij |.#

Proof: Let (x, λ) be an eigenvector-eigenvalue pair (note that this is valid even 
when M is not diagonalizable). Let i denote the coordinate of x with the maximum 
absolute value. Then Mx = λx gives j Mij xj = λxi. So # Mij xj = λxi −Miixi.j=i 
We conclude:  

|λ − Mii| =

      
      r r xj

Mij ≤ |Mij | = Ri. 
xi

j #=i j≤i 

Thus λ ∈ D(Mii, Ri). • 

Part 1 

Now let us return to the question posed at the beginning of the previous section: is 
M diagonalizable? Consider W

U−1 WMU = D + U−1EU. 

WWM is diagonalizable proceeds as follows: 

Part (a) Since

The proof that 

M and U−1 WMU are similar matrices, they have the same set 
of eigenvalues. 

Part (b) Moreover we can apply Theorem 3.2.2 to U−1MU W = D + U−1EU 
and if U is well-conditioned and E is sufficiently small, the radii will be much 
smaller than the closest pair of diagonal entries in D. Hence we conclude that the 
eigenvalues of U−1 WMU and also those of WM are distinct, and hence the latter can 
be diagonalized. 

Thanks to Santosh Vempala for pointing out an error in the original analysis; 
see also [66] for a more detailed proof along these lines. 

∑
6

∑ ∑
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Part 2 

M U ALet W = ADUA−1 . Now we can turn to our second intermediate goal, namely how 
does this compare to the actual diagonalization M = UDU−1? AMore specifically, if (uAi, λi) and (ui, λi) are corresponding eigenvector-eigenvalue 
pairs for W ui, λAi) to (ui, λi)? Using the argument M and M respectively, how close is (A
in Part 1 we know that λAi ≈ λi for each i. Furthermore, we assume that when 
i = j, the eigenvalues of M have sufficient separation. It remains to check that 
uAi ≈ ui. Let r 

cj uj = uAi. 
j 

Recall that W = M + E. M ,M Left-multiplying both sides of the equation above by W
we get r r 

cj λj uj + EuAi = λAiuAi. =⇒ cj (λj − λAi)uj = −EuAi. 
j j 

Let wj
T be the jth row of U−1 . Left-multiplying both sides of the above equation by 

wj
T , we get 

cj (λj − Aλi) = −wj
T EuAi. 

Recall we have assumed that the eigenvalues of M are separated. Hence if E is 
sufficiently small we have that λj − Aλi is bounded away from zero. Then we can 
bound the cj’s and this implies that uAi and ui are close. 

We can qualitatively restate this as follows: Let δ be the separation be­
tween the closest pair of eigenvalues of M and let κ be the condition number of 
U . Then if IEI ≤ poly(1/n, 1/κ, δ) the norm of the error satisfies IUA − UI ≤ 
poly(1/n, 1/κ, δ, IEI). 

Back to Tensor Decompositions 

We will introduce some notation to explain the application to tensor decompositions. 
Let “→” signify that one matrix converges to another at an inverse polynomial rate 
(as a function of the number of samples). For example, TA → T when TA represents 
the empirical moments of a distribution (with bounded moments) and T represents 
its true moments. Also TAa = TA(∗, ∗, a) → Ta and similarly for b. 

We leave it as an exercise to the reader to check that TAb 
+ → Tb 

+ under natural A TA+ T +conditions. It follows that → Ta b . We have already established that if Ta b 
E → 0, then the eigendecompositions of M and M + E converge. Finally we A Aconclude that the algorithm in Theorem 3.1.3 computes factors U and V which 

6  =
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converge to the true factors U and V at an inverse polynomial rate, and a similar 
proof works for WW and W as well. 

Open Problem: Kruskal rank 

We conclude this section with an open problem. 

Definition 3.2.3 The Kruskal rank of a set of vectors {ui}i is the maximum r such 
that all subset of r vectors are linearly independent. 

We will see later that it is NP -hard to compute the Kruskal rank. Nevertheless, there 
are strong uniqueness theorems for tensor decompositions (based on this parameter) 
for which there is no known algorithmic proof: 

Theorem 3.2.4 (Kruskal) Let T = r
i=1 ui ⊗ vi ⊗ wi and let ku, kv and kw be the 

Kruskal ranks of {ui}i, {vi}i, and {wi}i respectively. If ku + kv + kw ≥ 2r + 2 then 
T has rank r and this decomposition of T is unique up to rescaling. 

Open Question 1 Is there an efficient algorithm for tensor decompositions under 
any natural conditions, for r = (1 + ε)n for any ε > 0? 

For example, it is natural to consider a smoothed analysis model for tensor decompo­
sition [26] where the factors of T are perturbed and hence not adversarially chosen. 
The above uniqueness theorem would apply up to r = 3/2n − O(1) but there are no 
known algorithms for tensor decomposition in this model for r = (1+ t)n (although 
there are much better algorithms for higher-order tensors). 

3.3 Phylogenetic Trees and HMMs 

Here we describe an application of tensor decompositions to phylogenetic recon­
struction and HMMs. 

The Model 

A phylogenetic model has the following components: 

(a) A rooted binary tree with root r, where the leaves do not necessarily have the 
same depth. 

∑
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The biological interpretation is that the leaves represent extant species (ones that 
are still living), and the internal nodes represent speciation events. 

(b) A set Σ of states, for example Σ = {A, C, G, T }. Let k = |Σ|. 

(c) A Markov model on the tree; i.e. a distribution πr on the state of the root and 
a transition P uv matrix for each edge (u, v). 

We can generate a sample from the model as follows: We choose a state for the 
root according to πr and for each node v with parent u we choose the state of v 
according to the distribution defined by the ith row of P uv, where i is the state of 
u. Alternatively, we can think of s(·) : V → Σ as a random function that assigns 
states to vertices where the marginal distribution on s(r) is πr and 

P uv = P(s(v) = j|s(u) = i),ij 

Note that s(v) is independent of s(t) conditioned on s(u) whenever the (unique) 
shortest path from v to t in the tree passes through u. 

Our goal is to learn the above model - both the tree and the transition ma­
trices - from a polynomial number of random samples. We will assume that the 
transition matrices are full rank, in which case it is easy to see that we could root 
the tree arbitrarily. To connect this back with biology, here we are assuming we 
have sequenced each of the extant species and that moreover these sequences have 
already been properly aligned. We think of the ith symbol in each of these sequences 
as being an independent sample from the above model, and we want to reconstruct 
the evolutionary tree that led to the species we have today as well as get some un­
derstanding of how long these evolutionary branches were. We mention as a caveat 
that one of the most interesting and challenging problems in computational biology 
is to perform multiple sequence alignment, and here we have assumed that a fully 
aligned set of sequences is our starting point. Moreover our model for evolution is 
simplistic in that we only only point mutations instead of insertions, deletions and 
cross-over. 

This is really two separate learning goals: Our approach for finding the topol­
ogy will follow the foundational work of Steel [109] and Erdos, Steel, Szekely, and 
Warnow [57]. And from this, we can apply tensor methods to find the transition 
matrices following the approach of Chang [36] and later Mossel and Roch [96]. 

Finding the Topology 

The basic idea here is to define an appropriate distance function [109] on the edges 
of the tree, so that we can approximately compute the distance between leaves from 
our samples and then construct the tree. 
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Defining a Tree Metric 

Suppose first that, for leaves a and b, we have access to the true values of F ab, where 

F ab 
ij = P(s(a) = i, s(b) = j). 

In [109], Steel defined a distance metric on the tree in a way that allows us to 
compute the distances between leaves a and b, given F ab . In particular, let 

ψab := − ln |det(F ab)|. 

Steel showed that r 
ψab = νuv, 

(u,v)∈pab 

where pab is the unique path in the tree from a to b, and ⎛ ⎞ ⎛ ⎞ 
1 1 

νuv = − ln |det(P uv)| + ln ⎝ πu(i)⎠ − ln ⎝ πv(i)⎠ . 
2 2 

i∈[k] i∈[k] 

He then showed that νuv is always non-negative (which is not obvious), and hence 
ψ is indeed a metric. 

The important point is that we can estimate F ab from our samples, and hence 
we can (approximately) compute ψab on the leaves. 

Reconstructing Quartets 

Here we will use ψ to compute the topology. Fix four leaves a, b, c, and d, and 
there are exactly three possible induced topologies between these leaves, given in 
Figure 3.1. (Here by induced topology, we mean delete edges not on any shortest 
path between any pair of the four leaves, and contract paths to a single edge if possi­
ble). Our goal is to determine which of these induced topologies is the true topology, 
given the pairwise distances. Consider topology (a) on the left of Figure 3.1; in this 
case, we have 

ψ(a, b) + ψ(c, d) < min {ψ(a, c) + ψ(b, c), ψ(a, d) + ψ(b, d)} , 

Thus we can determine which is the true induced topology by computing three 
values ψ(a, b) + ψ(c, d), ψ(a, c) + ψ(b, c), and ψ(a, d) + ψ(b, d). Whichever is the 
smallest determines the induced topology because whichever nodes are paired up 
are the ones with a common parent (again in the induced topology). 



�
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Figure 3.1: Possible quartet topologies 

Indeed from just these quartet tests we can recover the topology of the tree. 
For example, a pair of leaves a, b have the same parent if and only if these nodes 
always have a common parent in the induced topology for each quartet test. Hence 
we can pair up all of the leaves so that they have the same parent, and it is not hard 
to extend this approach to recover the topology of the tree. 

Handling Noise 

Note that we can only approximate F ab from our samples. This translates into a 
good approximation of ψab when a and b are close, but is noisy when a and b are 
far away. The approach in [57] of Erdos, Steel, Szekely, and Warnow is to only use 
quartets where all of the distances are short. 

Finding the Transition Matrices 

Here we will assume that we know the topology of the tree and T abc for all triplets 
a, b, c of leaves, where 

T abc 
ijk = P(s(a) = i, s(b) = j, s(c) = k). 

(which we can approximate from random samples). Then consider the unique node 
that lies on all of the shortest paths among a, b, and c; since we can reroot the tree 
arbitrarily let this node be r. Then r 
T abc = P(s(r) = f)P(s(a) = ·|s(r) = f) ⊗ P(s(b) = ·|s(r) = f) ⊗ P(s(c) = ·|s(r) = f) r 

= P(s(r) = f)P ra ⊗ P rb ⊗ P rc 

where we have used P rx to denote the fth row of the transition matrix P rx . 

`

`

` ` `

`
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We can now apply the algorithm in Section 3.1 to compute a tensor decom­
position of T whose factors are unique up to rescaling. Furthermore the factors are 
probability distributions and hence we can compute their proper normalization. We 
will call this procedure a star test. (Indeed, the algorithm for tensor decompositions 
in Section 3.1 has been re-discovered many times and it is also called Chang’s lemma 
[36]). 

In [96], Mossel and Roch use this approach to find the transition matrices of 
a phylogenetic tree, given the tree topology, as follows. Let us assume that u and 
v are internal nodes and that w is a leaf. Furthermore suppose that v lies on the 
shortest path between u and w. The basic idea is to write 

P uw = P uvP vw 

and if we can find P uw and P vw (using the star tests above) then we can compute 
P uv = P uw(P vw)−1 since we have assumed that the transition matrices are invertible. 

However there are two serious complications: 

(a) As in the case of finding the topology, long paths are very noisy. 

Mossel and Roch showed that one can recover the transition matrices also using 
only queries to short paths. 

(b) We can only recover the tensor decomposition up to relabeling. 

In the above star test, we could apply any permutation to the states of r and permute 
the rows of the transition matrices P ra , P rb and P rc accordingly so that the resulting 
joint distribution on a, b and c is unchanged. 

However the approach of Mossel and Roch is to work instead in the framework 
of PAC learning [114] where the goal is to learn a generative model that produces 
almost the same joint distribution on the leaves. (In particular, if there are multiple 
ways to label the internal nodes to produce the same joint distribution on the leaves, 
we are indifferent to them). 

Remark 3.3.1 HMMs are a special case of phylogenetic trees where the underlying 
topology is a caterpillar. But note that for the above algorithm, we need that the 
transition matrices and the observation matrices are full-rank. 

More precisely, we require that the transition matrices are invertible and that 
the observation matrices whose row space correspond to a hidden node and whose 
column space correspond to the output symbols each have full row rank. 
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Beyond Full Rank? 

The algorithm above assumed that all transition matrices are full rank. In fact if 
we remove this assumption, then it is easy to embed an instance of the noisy parity 
problem [31] which is a classic hard learning problem. Let us first define this problem 
without noise: 

Let S ⊂ [n], and choose Xj ∈ {0, 1}n independently and uniformly at random, 
for j = 1, . . . ,m. Given Xj and bj = χS (Xj ) := i∈S Xj (i) mod 2 for each j, the 
goal is to recover S. 

This is quite easy: Let A be the matrix whose jth row is Xj and let b be a 
column vector whose jth entry is bj . It is straightforward to see that 1S is a solution 
to the linear system Ax = b where 1S is the indicator function for S. Furthermore if 
we choose Ω(n log n) samples then A is w.h.p. full column rank and so this solution 
is unique. We can then find S by solving a linear system over GF (2). 

Yet a slight change in the above problem does not change the sample com­
plexity but makes the problem drastically harder. The noisy parity problem is the 
same as above but for each j we are independently given the value bj = χS (Xj ) with 
probably 2/3 and otherwise bj = 1 − χS (Xj ). The challenge is that we do not know 
which labels have been flipped. 

Claim 3.3.2 There is a brute-force algorithm that solves the noisy parity problem 
using O(n log n) samples 

Proof: For each T , calculate χT (Xj )bj over the samples. Indeed χT (Xj ) and bj are 
correlated if and only if S = T . • 

This algorithm runs in time 2n (roughly). The state-of-the-art due to Blum, 
Kalai, and Wasserman [31] has running time and sample complexity 2n/ log n . It is 
widely believed that there is no polynomial time algorithm for noisy parity even 
given any polynomial number of samples. This is an excellent example of a problem 
whose sample complexity and computational complexity are (conjectured) to be wildly 
different. 

Next we show how to embed samples from a noisy parity problem into an 
HMM, however to do so we will make use of transition matrices that are not full 
rank. Consider an HMM that has n hidden nodes, where the ith hidden node 
encodes is used to represent the ith coordinate of X and the running parity r 

χSi (X) := X(i ' ) mod 2. 
i '≤i,i '∈S 

∑
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Hence each node has four possible states. We can define the following transition 
matrices. Let s(i) = (xi, si) be the state of the ith internal node where si = χSi (X). 

We can define the following transition matrices: 

1 
2 (0, si) 

P i+1,iif i + 1 ∈ S = 1 

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩  

2 (1, si + 1 mod 2) 
0 otherwise 
1 
2 (0, si) 

P i+1,iif i + 1 ∈/ S = 1 
2 (1, si) .  
0 otherwise  

At each internal node we observe xi and at the last node we also observe χS (X) 
with probability 2/3 and otherwise 1 − χS (X). Each sample from the noisy parity 
problem is a set of observations from this HMM, and if we could learn the transition 
matrices of it we would necessarily learn S and solve the noisy parity problem. 

Note that here the observation matrices are certainly not full rank because 
we only observe two possible emissions even though each internal node has four 
possible states! Hence these problems become much harder when the transition (or 
observation) matrices are not full rank! 

3.4 Community Detection 

Here we give applications of tensor methods to community detection. There are 
many settings in which we would like to discover communities - that is, groups of 
people with strong ties. Here we will focus on graph theoretic approaches, where 
we will think of a community as a set of nodes that are better connected to each 
other than to nodes outside of the set. There are many ways we could formalize this 
notion, each of which would lead to a different optimization problem e.g. sparsest 
cut or k-densest subgaph. 

However each of these optimization problems is NP -hard, and even worse are 
hard to approximate. Instead, we will formulate our problem in an average-case 
model where there is an underlying community structure that is used to generate a 
random graph, and our goal is to recover the true communities from the graph with 
high probability. 
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Block Stochastic Model 

Here we introduce the block stochastic model, which is used to generate a random 
graph on V with |V | = n. Additionally, the model is specified by parameters p and 
q and a partitioning specified by a function π: 

•	 π : V → [k] partitions the vertices V into k disjoint groups (we will relax this 
condition later); 

•	 Each possible edge (u, v) is chosen independently with: 

q π(u) = π(v)
Pr[(u, v) ∈ E] =	 . 

p otherwise 

In our setting we will set q > p, but this model has been studied in cases where 
q < p too. (In particular, when q = 0 we could ask to find a k-coloring of this 
random graph). Regardless, we observe a random graph generated from the above 
model and our goal is to recover the partition described by π. 

When is this information theoretically possible? In fact even for k = 2 where 
π is a bisection, we need  

log n 
q − p > Ω

n 
in order for the true bisection to be the uniquely smallest cut that bisects the 
random graph G with high probability. If q − p is smaller, then it is not even 
information theoretically possible to find π. Indeed, we should also require that 
each part of the partition is large, and for simplicity we will assume that k = O(1) 
and |{u|π(u) = i}| = Ω(n). 

There has been a long line of work on partitioning random graphs in the block 
stochastic model, culminating in the work of McSherry [91]: 

Theorem 3.4.1 [91] There is an efficient algorithm that recovers π (up to relabel­
ing) if  

q − p log n/δ
> c

q qn 

and succeeds with probability at least 1 − δ. 

This algorithm is based on spectral clustering, where we think of the observed adja­
cency matrix as the sum of a rank k matrix which encodes π and an error term. If 
the error is small, then we can recover something close to the true rank k matrix by 

{

( )
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finding the best rank k approximation to the adjacency matrix. For the full details, 
see [91]. 

We will instead follow the approach in Anandkumar et al [9] that makes use 
of tensor decompositions instead. In fact, the algorithm of [9] also works in the 
mixed membership model where we allow each node to be a distribution over [k]. 
Then if πu and πv are the probability distributions for u and v, the probability of 
an edge (u, v) is πuπi

vq + i=j π
uπj

vp. We can interpret this probability as: ui i # i 
and v choose a community according to πu and πv respectively, and if they choose 
the same community there is an edge with probability q and otherwise there is an 
edge with probability p. 

Recall that in order to apply tensor decomposition methods what we really 
need are conditionally independent random variables! In fact we will get such ran­
dom variables based on counting three stars. 

Counting Three Stars 

We will partition V into four sets (arbitrarily) X, A, B, and C. Let Π ∈ {0, 1}V ×k 

represent the (unknown) assignment of vertices to communities, such that each 
row of Π contains exactly one 1. Also let R ∈ Rk×k be the matrix describing the 
probability of each pair of communities having an edge. In particular, 

q i = j
(R)ij = . 

p i = j 

Consider the product ΠR. The ith column of ΠR encodes the probability that 
an edge occurs from a vertex in community i to a given other vertex: 

(ΠR)xi = Pr[(x, a) ∈ E|π(a) = i]. 

We will use (ΠR)Ai to denote the matrix ΠR restricted to the ith column and 
the rows in A, and similarly for B and C. Moreover let pi be the fraction of nodes 
in X that are in community i. Then consider the following tensor r r 

T := piTx = pi(ΠR)
A ⊗ (ΠR)B ⊗ (ΠR)C .i i i 

i i 

The key claim is: 

Claim 3.4.2 Let a ∈ A, b ∈ B and c ∈ C; then Ta,b,c is exactly the probability that 
a random node x ∈ X is connected to a, b and c. 

∑ ∑
6

{
6
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This is immediate from the definitions above. In particular if we look at whether 
(x, a), (x, b) and (x, c) are edges in G, these are conditionally independent random 
variables. Then we need to prove: 

A(a) If |X| = Ω(|A||B||C|/t2), then we can estimate T accurately 

(b) The factors {(ΠR)A}i, {(ΠR)B }i, and {(ΠR)B}i are linearly independent, and i i i 
hence the tensor decomposition of T is unique by Theorem 3.1.3 

More precisely, we need these factors to be well-conditioned so that we can approx­
imate them from an approximation TA to T . See Section 3.2. 

(c) We can recover π from {(ΠR)A}i up to relabeling. i 

Part (a) Let {Xa,b,c}a,b,c be a partition of X into almost equal sized sets, one for 
each a ∈ A, b ∈ B and c ∈ C. Then 

|{x ∈ Xa,b,c|(x, a), (x, b), (x, c) ∈ E}|ATa,b,c = 
|Xa,b,c| 

will be close to Ta,b,c with high probability. We can then use a union bound. 

Part (b) It is easy to see that R is full rank and moreover if we choose A, B and 
C at random then if each community is large enough, with high probability each 
community will be well-represented in A, B and C and hence the factors {(ΠR)A}i,i 
{(ΠR)B }i, and {(ΠR)B }i will be non-negligibly far from linearly dependent. i i 

Part (c) Note that if we have a good approximation to {(ΠR)A}i then we can i 
partition A into communities. In turn, if A is large enough then we can extend this 
partitioning to the whole graph: We add a node x /∈ A to community i if and only if 
the fraction of nodes a ∈ A with π(a) = i that x is connected to is close to q. With 
high probability, this will recover the true communities. 

However for a full proof of the algorithm see [9]. Anandkumar et al also give an 
algorithm for mixed membership models where each πu is chosen from a Dirichlet. 
We will not cover this latter extension because we will instead explain those types 
of techniques in the setting of topic models next. 

We note that there are powerful extensions to the block-stochastic model that 
are called semi-random models. Roughly, these models allow an “adversary” to add 
edges between nodes in the same cluster and delete edges between clusters after G 
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is generated. If π is the best partitioning of G, then this is only more true after the 
changes. Interestingly, many spectral algorithms breakdown in this more flexible 
model, but there are elegant techniques for recovering π even in this more general 
setting (see [60], [59]). 

3.5 Extensions to Mixed Models 

Here we will extend tensor spectral models to work with (some) mixed models. 

Pure Topic Model 

First we describe an easy application of tensor methods to pure topic models (see 
[10]). Recall that there is an unknown topic matrix A and we obtain samples from 
the following model: 

(a) Choose topic i for document j with probability pi 

(b) Choose Nj words according to the distribution Ai 

If each document has at least three words, we can define the tensor TA where TAa,b,c 
counts the fraction of documents in our sample whose first word, second word and 
third word are a, b and c respectively. Then it is easy to see that if the number of 
documents is large enough then TA converges to: 

rr 
T = piAi ⊗ Ai ⊗ Ai 

i=1 

In order to apply the algorithm in Section 3.1, we just need that A has full column 
rank. In this case the factors in the decomposition are unique up to rescaling, and 
the algorithm will find them. Finally, each column in A is a distribution and so 
we can properly normalize these columns and compute the values pi too. Recall in 
Section 3.2 we analyzed the noise tolerance of our tensor decomposition algorithm. AIt is easy to see that this algorithm recovers a topic matrix A and a distribution 
{pAi}i that is t-close to A and {pi}i respectively with high probability if we are given 
at least poly(n, 1/t, 1/σr) documents of length at least three, where n is the size of 
the vocabulary and σr is the smallest singular value of A. 

We will refer to this as an application of tensor methods to pure models, since 
each document is described by one and only one topic. Similarly, in our applica­
tion to community detection, each node belonged to one and only one community. 
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Finally, in our application to phylogenetic reconstruction, each hidden node was in 
one and only one state. Note however that in the context of topic models, it is much 
more realistic to assume that each document is itself a mixture of topics and we will 
refer to these as mixed models. 

Latent Dirichlet Allocation 

Here we will give a tensor spectral algorithm for learning a very popular mixed 
model, called Latent Dirichlet Allocation [30]. Let Δ := {x ∈ Rr : x ≥ 0, xi = 1}i 
denotes the r-dimensional simplex. Then we obtain samples from the following 
model: 

(a) Choose a mixture over topics wj ∈ Δ for document j according to the Dirichlet 
distribution Dir({αi}i) 

(b) Repeat Nj times: choose a topic i from wj , and choose a word according to 
the distribution Ai. 

The Dirichlet distribution is defined as 

p(x) ∝ xi
αi−1 for x ∈ Δ 

i 

Note that if documents are long (say Nj > n log n) then in a pure topic model, pairs 
of documents often have nearly identical empirical distributions on words. But this 
is no longer the case in mixed models like the one above. 

The basic issue in extending our tensor spectral approach to mixed models is 
that the tensor TA that counts triples of words converges to r 

T = DijkAi ⊗ Aj ⊗ Ak 
ijk 

where Di,j,k is the probability that the first three words in a random document are 
generated from topics i, j and k respectively. In a pure topic model, Di,j,k was 
diagonal but for a mixed model it is not! 

Definition 3.5.1 A Tucker decomposition of T is r 
T = Di,j,kai ⊗ bj ⊗ ck 

i,j,k 

where D is r1 × r2 × r3. We call D the core tensor. 

∑

∏
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This is different than the standard definition for a tensor decomposition where we 
only summed over i = j = k. The good news is that computing a Tucker decom­
position of a tensor is easy. Indeed we can always set r1 equal to the dimension of 
span({Ti,∗,∗}i), and similarly for r2 and r3. However the bad news is that a Tucker 
decomposition is in general not unique, so even if we are given T we cannot nec­
essarily compute the above decomposition whose factors are the topics in the topic 
model. 

How can we extend the tensor spectral approach to work with mixed models? 
The elegant approach of Anandkumar et al [8] is based on the following idea: 

Lemma 3.5.2 r 
T = DijkAi ⊗ Aj ⊗ Ak 

ijk r 
S = DAijkAi ⊗ Aj ⊗ Ak 

ijk r 
=⇒ T − S = (Dijk − DAijk)Ai ⊗ Aj ⊗ Ak 

ijk 

Proof: The proof is a simple exercise in multilinear algebra. • 

Hence if we have access to other tensors S which can be written using the same 
factors {Ai}i in its Tucker decomposition, we can subtract T and S and hope to 
make the core tensor diagonal. We can think of D as being the third order moments 
of a Dirichlet distribution in our setting. What other tensors do we have access to? 

Other Tensors 

We described the tensor T based on the following experiment: Let Ta,b,c be the prob­
ability that the first three words in a random document are a, b and c respectively. 
But we could just as well consider alternative experiments. The three experiments 
we will need in order to given a tensor spectral algorithm for LDA are: 

(a) Choose three documents at random, and look at the first word of each docu­
ment 

(b) Choose two documents at random, and look at the first two words of the first 
document and the first word of the second document 

(c) Choose a document at random, and look at its first three words 
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These experiments result in tensors whose factors are the same, but whose cores 
differ in their natural Tucker decomposition. 

Definition 3.5.3 Let µ, M and D be the first, second and third order moments of 
the Dirichlet distribution. 

More precisely, let µi be the probability that the first word in a random document 
was generated from topic i. Let Mi,j be the probability that the first and second 
words in a random document are generated from topics i and j respectively. And as 
before, let Di,j,k be the probability that the first three words in a random document 
are generated from topics i, j and k respectively. Then letT 1 , T 2 and T 3 be the 
expectation of the first, second and third experiments respectively. 

Lemma 3.5.4 (a) T 1 = [µ ⊗ µ ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(b) T 2 = [M ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(c) T 3 = i,j,k Di,j,kAi ⊗ Aj ⊗ Ak 

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and similarly 
for the other words). We can expand P[w1 = a, w2 = b, w3 = c] as: r 

P[w1 = a, w2 = b, w3 = c|t1 = i, t2 = j, t3 = k]P[t1 = i, t2 = j, t3 = k] 
i,j,k 

and the lemma is now immediate. • 

Note that T 2 = T 2 because two of the words come from the same document. a,b,c a,c,b 
Nevertheless, we can symmetrize T 2 in the natural way: Set Sa,b,c 

2 
a,b,c + T 2= T 2 

b,c,a + 
T 2 Hence S2 = S2 for any permutation π : {a, b, c} → {a, b, c}.c,a,b. a,b,c π(a),π(b),π(c) 

Our main goal is to prove the following identity: 

α2D + 2(α0 + 1)(α0 + 2)µ ⊗3 − α0(α0 + 2)M ⊗ µ(all three ways) = diag({pi}i)0

where α0 = i αi. Hence we have that r 
α0
2T 3 + 2(α0 + 1)(α0 + 2)T 1 − α0(α0 + 2)S2 = piAi ⊗ Ai ⊗ Ai 

i 

The important point is that we can estimate the terms on the left hand side from our 
sample (if we assume we know α0) and we can apply the algorithm from Section 3.1 
to the tensor on the right hand side to recover the topic model, provided that A has 
full column rank. In fact, we can compute α0 from our samples (see [8]) but we will 
focus instead on proving the above identity. 

∑
∑
∑

6=

∑
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Moments of the Dirichlet 

The main identity that we would like to establish is just a statement about the 
moments of a Dirichlet distribution. In fact, we can think about the Dirichlet as 
instead being defined by the following combinatorial process: 

(a) Initially, there are αi balls of each color i 

(b) Repeat C times: choose a ball at random, place it back with one more of its 
own color 

This process gives an alternative characterization of the Dirichlet distribution, from 
which it is straightforward to calculate: 

α2 αr(a) µ = [α1 , , ..., ]
α0 α0 α0 

αi(αi+1) i = j
α0(α0+1)(b) Mi,j = .αiαj otherwise
α0(α0+1) 

(c) Ti,j,k =  

⎧ ⎪⎨ ⎪⎩  

αi(αi+1)(αi+2) i = j = k
α0(α0+1)(α0+2) 

αi(αi+1)αk i = j = k  . 
α0(α0+1)(α0+2) 

αiαj αk i, j, k distinct 
α0(α0+1)(α0+2) 

For example for Ti,i,k this is the probability that the first two balls are color i and 
the third ball is color k. The probably that the first ball is color i is 

α
α

0 
i and since 

we place it back with one more of its own color, the probability that the second ball 
αi+1 αkis color i as well is . And the probability that the third ball is color k is .
α0+1 α0+2 

It is easy to check the above formulas in the other cases too. 

Note that it is much easier to think about only the numerators in the above 
formulas. If we can prove that following relation for just the numerators 

D + 2µ ⊗3 − M ⊗ µ(all three ways) = diag({2αi}i) 

it is easy to check that we would obtain our desired formula by multiplying through 
by α3

0(α0 + 1)(α0 + 2). 

Definition 3.5.5 Let R = num(D) + num(2µ⊗3) − num(M ⊗ µ)(all three ways) 

Then the main lemma is: 

{

6=
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Lemma 3.5.6 R = diag({2αi}i) 

We will establish this by a case analysis: 

Claim 3.5.7 If i, j, k are distinct then Ri,j,k = 0 

This is immediate since the i, j, k numerator of D, µ⊗3 and M ⊗ µ are all αiαj αk. 

Claim 3.5.8 Ri,i,i = 2αi 

This is also immediate since the i, i, i numerator of D is αi(αi + 1)(αi + 2) and 
similarly the numerator of µ⊗3 is αi 

3 . Finally, the i, i, i numerator of M ⊗ µ is 
αi 
2(αi + 1). The case that requires some care is: 

Claim 3.5.9 If i = k, Ri,i,k = 0 

The reason this case is tricky is because the terms M ⊗ µ(all three ways) do not 
all count the same. If we think of µ along the third dimension of the tensor then 
the ith topic occurs twice in the same document, but if instead we think of µ as 
along either the first or second dimension of the tensor, even though the ith topic 
occurs twice it does not occur twice in the same document. Hence the numerator 
of M ⊗ µ(all three ways) is αi(αi + 1)αk + 2αi 

2αk. Also, the numerator of D is 
αi(αi + 1)αk and the numerator of µ⊗3 is again αi 

2αk. 

These three claims together establish the above lemma. Even though the 
tensor T 3 that we could immediately decompose in a pure topic model no longer 
has a diagonal core tensor in a mixed model, at least in the case of LDA we can 
still find a formula (each of whose terms we can estimate from our samples) that 
diagonalizes the core tensor. This yields: 

Theorem 3.5.10 [8] There is a polynomial time algorithm to learn a topic matrix AA that is t close to the true A in a Latent Dirichlet Allocation model, provided we 
are given at least poly(n, 1/t, 1/σr, 1/αmin) documents of length at least thee, where 
n is the size of the vocabulary and σr is the smallest singular value of A and αmin 
is the smallest αi. 

Similarly, there are algorithms for community detection in mixed models too, where 
for each node u we choose a distribution πu over clusters from a Dirichlet distribution 
[9]. However these algorithms seem to be quite dependent on the assumption that 
we use a Dirichlet distribution, and it seems hard to generalize these algorithms to 
any other natural distributions. 

6=
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3.6 Independent Component Analysis 

We can think about the tensor methods we have developed as a way to use higher 
order moments to learn the parameters of a distribution (e.g. for phylogenetic 
trees, HMMs, LDA, community detection) through tensor decomposition. Here we 
will give another style of using the method of moments through an application to 
independent component analysis which was introduced by Comon [42]. 

This problem is simple to define: Suppose we are given samples of the form 

y = Ax + b 

where we know that the variables xi are independent and the linear transformation 
(A, b) is unknown. The goal is to learn A, b efficiently from a polynomial number 
of samples. This problem has a long history, and the typical motivation for it is to 
consider a hypothetical situation called the cocktail party problem 

We have N microphones and N conversations going on in an room. 
Each microphone hears a superposition of the conversations given by the 
corresponding rows of A. If we think of the conversations as independent 
and memoryless, can we disentangle them? 

Such problems are also often referred to as blind source separation. We will follow 
an approach of Frieze, Jerrum and Kannan [62]. 

Step 1 

We can always transform the problem y = Ax + b into y = AAxA+Ab so that E[xAi] = 0 
2and E[xAi ] = 1 for all i by setting Ab = b + A E[x] and AAi = Aistd(xi) where std(xi) is 

the standard deviation of xi. 

Note that the distribution on y has not changed, but we have put (A, x) into a 
canonical form since we anyways cannot distinguish between a pair of linear trans­
formations that have the same canonical form. So without loss of generality we have 
reduced to the problem of learning 

y = Ax + b 

where for all i, E[xi] = 0, E[xi 2] = 1. Also we can set b = 0 since we can easily learn 
b. The crucial assumption that we will make is that A is non-singular. 



  

� � 

51 3.6. INDEPENDENT COMPONENT ANALYSIS 

Step 2 

E[yyT ] = E[AxxT AT ] = AAT 

The last equality follows from the condition that E[xi] = 0, E[x2 
i ] = 1 and each xi is 

independent. Hence we have access to M = AAT which we can learn up to arbitrary 
precision by taking sufficiently many random samples. But what does this tell us 
about A? We have encountered this problem before: M does not uniquely define A, 
and our approach was to consider higher order tensors. This time we will proceed 
in a different manner. 

Since M > 0 we can find B such that M = BBT . How are B and A related? 

In fact, we can write 

BBT = AAT ⇒ B−1AAT (B−1)T = I 

and this implies that B−1A is orthogonal since a square matrix times its own trans­
pose is the identity if and only if it is orthogonal. So we have learned A up to an 
unknown rotation. Can we hope to learn the rotation R = B−1A? Hint: what if 
each xi is a standard Gaussian? 

In this case, Rx is also a spherical Gaussian and hence we cannot hope to 
learn R without an additional assumption. In fact, this is the only case that can go 
wrong: Provided the xi’s are not Gaussian, we will be able to learn R and hence A. 
For simplicity let us assume that each xi is ±1 hence E[xi 4] = 1 and yet the fourth 
moment of a Gaussian is three. Note that we can apply B−1 to our samples and 
hence we can imagine that we are getting samples from y = Rx. The key to our 
analysis is the following functional 

F (u) := E[(u T Rx)4] 

As u ranges over the unit sphere, so does vT = uT R and so instead of minimiz­
ing F (u) over unit vectors u we can instead work with the following equivalent 
optimization problem: 

min E[(v T x)4] 
�v�2=1 

What are its local minima? 

  r r 
E (v T x)4 = E (vixi)

4 + 6 (vixi)
2(vj xj )

2 = 
i ij r r r r r 

= v 4 
i E(x 4 

i ) + 6 v 2 
i v 2 

j + 3 v 4 
i − 3 v 4 

i + 3( v 2 
i ) 

i ij i i i 

= 
r 

v 4 
i E

 
x 4 
i

 
− 3 + 3 

i 

( )
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Hence the local minima of F (v) correspond exactly to setting vi = ±1 for some i. 
Recall that vT = uT R and so this characterization implies that the local minima of 
F (u) correspond to setting u to be a column of ±R. 

The algorithm proceeds by using gradient descent (and a lower bound on the 
Hessian) to show that you can find a local optima of F (u) quickly, and we can 
then recurse on the orthogonal complement to the vector we have found to find the 
other columns of R. This idea requires some care to show that the errors do not 
accumulate too badly, see [62], [116], [16]. 

In fact what we just computed are the cumulants that are an alternative basis 
for the moments of a distribution. Often these are much easier to work with since 
they satisfy the appealing property that the cumulants of the sum of independent 
variables Xi and Xj are the themselves the sum of the cumulants of Xi and Xj . 
This is precisely the property we exploited here. 
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