
Chapter 3

Tensor Methods

In this chapter we will study algorithms for tensor decompositions and their appli­
cations to statistical inference.

3.1 Basics

Here we will introduce the basics of tensors. A matrix is an order two tensor – it is
indexed by a pair of numbers. In general a tensor is indexed over k-tuples, and k is
called the order of a tensor. We can think of a tensor T as a point in Rn1×n2×...×nk .
We will mostly be interested in order three tensors throughout this chapter. If T is
an order three tensor of size m × n × p we can regard T as a collection of p matrices
of size m × n that are stacked on top of each other.

We can generalize many of the standard definitions from linear algebra to the
tensor setting, however we caution the reader that while these parameters are easy
to compute for matrices, most parameters of a tensor are hard to compute (in the
worst-case).

Definition 3.1.1 A rank one tensor is a tensor of the form T = u ⊗ v ⊗ w where
Ti,j,k = uivj wk. And in general the rank of a tensor T is the minimum r such that
we can write T as the sum of r rank one tensors.

Question 5 Tensors are computationally more difficult to work with; so why should
we try to work with them?

In fact, we will give a motivating example in the next section that illustrates the
usefulness of tensor methods in statistics and machine learning (and where matrices
are not sufficient).

Algorithmic Aspects of Machine Learning
© 2015 by Ankur Moitra.
Note: These are unpolished, incomplete course notes.
Developed for educational use at MIT and for publication through MIT OpenCourseware. 25

26 CHAPTER 3. TENSOR METHODS

Case Study: Spearman’s Hypothesis

Charles Spearman was a famous psychologist who postulated that there are essen­
tially two types of intelligence: mathematical and verbal. In particular, he believed
that how well a student performs at a variety of tests depends only on their intrinsic
aptitudes along these two axes. To test his theory, he set up a study where a thou­
sand students each took ten various types of test. He collected these results into a
matrix M where the entry Mi,j was used to denote how well student i performed on
test j. Spearman took the best rank two approximation to M . In other words, that

∈ R1000there exists vectors (not necessarily unit vectors) u1, u2 , v1, v2 ∈ R10, such
that

M ≈ u1v	 T + u2v T
1 2

This is called factor analysis, and his results somewhat confirmed his hypothesis.
But there is a fundamental obstacle to this type of approach that is often referred
to as the “Rotation Problem”. Set U = [u1, u2] and V = [v1, v2] and let O be an
orthogonal matrix. Then

UV T = UO OT V T

is an alternative factorization that approximates M just as well. However the
columns of UO and the rows of OT V T could be much less interpretable. To summa­
rize, just because there is a good factorization of a given data matrix M does not
mean that factor analysis will find it.

Alternatively, suppose we are given a matrix M = r xiy
T .i=1 i

Question 6 Can we determine {xi}i and {yi}i if we know M?

Actually, there are only trivial conditions under which we can uniquely determine
these factors. If r = 1 of if we know for a priori reasons that the vectors {xi}i and
{yi}i are orthogonal, then we can. But in general we could take the singular value
decomposition of M = UΣV T and take {σiui}i and {vi}i to be an alternative set
of factors that explain M (and if {xi}i and {yi}i are not orthogonal, then these are
clearly two different sets of factors for the same M).

However if we are given a tensor
rr

T = xi ⊗ yi ⊗ wi
i=1

then there are general conditions (namely if {xi}i, {yi}i and {wi}i are each linearly
independent) not only is the true factorization the unique factorization of T with
rank r but in fact there are simple algorithms to find it! This is precisely the reason
that tensor methods are ubiquitous in statistics and machine learning: If we are

∑

27 3.1. BASICS

given a tensor whose factors represent the parameters of a statistical model, we can
find these factors efficiently; yet for matrices the factors are not uniquely determined.

Complexity of Tensor Problems

In the previous subsection, we alluded to the fact that tensor methods will offer a
way around the “Rotation Problem” which is a common obstacle in factor analysis.
So can we just compute the minimum rank decomposition of a tensor? In fact, not
only is this problem computationally hard (without further assumptions) but most
tensor problems are hard [71]! Even worse, many of the standard relations in linear
algebra do not hold and even the definitions are in some cases not well-defined.

(a) For	 a matrix A, dim(span({Ai}i)) = dim(span({Aj }j)) (the column rank
equals the row rank).

However no such relation holds for tensors.

(b) For a matrix A, the best rank k approximation to A can be obtained from its
best rank k + 1 approximation.

In particular, if we let A(k+1) be the best rank k + 1 approximation to A, then the
best rank k approximation to A(k+1) is the best rank k approximation to A. But for
tensors the best rank k and rank k + 1 approximations do not necessarily share any
common rank one factors. In fact, subtracting the best rank one approximation to
a tensor T from it can actually increase its rank.

(c) For a real-valued matrix its rank over R and over C are the same, but this is
false for tensors.

There are real-valued tensors whose minimum rank decomposition requires complex
numbers.

Perhaps the most worrisome issue is that in some cases the definitions fail too:

Definition 3.1.2 The border rank of a tensor T is the minimum r such that for
any ε > 0 there is a rank r tensor that is entry-wise ε close to T .

We remark that what norm we use in the above definition is not important. In
fact, for matrices the border rank is equal to the rank. But for tensors these can be
different.

28 CHAPTER 3. TENSOR METHODS

(d) For a tensor, its border rank is not necessarily equal to its rank.

Consider the following 2 × 2 × 2 tensor T , over R:
0 1 1 0

T = , .
1 0 0 0

We will omit the proof that T has rank 3, but show that T admits an arbitrarily
close rank 2 approximation. Consider the following matrices

1 n 1 1 n 0 0 0
Sn = , n

1 and Rn = , .1 11 0 0 0 02n n n

1 1 1It is not too hard to see that Sn = n ⊗ ⊗ , and hence is rank 1, and 1/n 1/n 1/n
Rn is also rank 1. Thus the tensor Sn − Rn is rank 2, but also is an 1/n entry-wise
approximation of T .

One last issue is that it is easy to see that a random n × n × n tensor will have
rank Ω(n2), but it is unknown how to explicitly construct any order three tensor
whose rank is Ω(n1+ε). And any such construction would give the first super-linear
circuit lower bounds for any explicit problem [102] which is a long-standing open
question in circuit complexity.

Jennrich’s Algorithm

While we cannot hope for algorithms that find the minimum rank decomposition of
a tensor in general, in fact there are mild conditions under which we can do it. This
algorithm has been rediscovered numerous times in a wide range of applications, and
after an extensive search we discovered that this simple algorithm was first reported
in a working paper of Harshman [70] where the author credits Dr. Robert Jennrich.
We will state and prove a version of this result that is more general, following the
approach of Leurgans, Ross and Abel [87]:

Theorem 3.1.3 [70], [87] Consider a tensor

rr
T = ui ⊗ vi ⊗ wi

i=1

where each set of vectors {ui}i and {vi}iare linearly independent, and moreover each
pair of vectors in {wi}i are linearly independent too. Then the above decomposition
is unique up to rescaling, and there is an efficient algorithm to find it.

() () ()

� �

� �

29 3.1. BASICS

We will see a wide variety of applications of this basic result (which may ex­
plain why it has been rediscovered so many times) to phylogenetic reconstruction
[96], topic modeling [8] and community detection [9]. This decomposition also plays
a crucial role in learning mixtures of spherical Gaussians [75] and independent com­
ponent analysis [36], although we will instead present a local search algorithm for
the latter problem.

Tensor Decomposition [70], [87]
Input: tensor T ∈ Rm×n×p satisfying the conditions in Theorem 3.1.3
Output: factors {ui}i, {vi}i and {wi}i

Choose a, b ∈ Sp−1 uniformly at random; set Ta = T (∗, ∗, a) and Tb = T (∗, ∗, b)

Compute the eigendecomposition of Ta(Tb)+ and Tb(Ta)+

Let U and V be the eigenvectors
Pair up ui and vi iff their eigenvalues are reciprocals

Solve for wi in T = i
r
=1 ui ⊗ vi ⊗ wi

End

Recall that Ta is just the weighted sum of matrix slices through T , each weighted
by ai. It is easy to see that:

r T r TClaim 3.1.4 Ta = wi, a uivi and Tb = wi, b uivii=1 i=1

Alternatively, let Da = diag({� wi, a �}i) and let Db = diag({� wi, b �}i). Then we can
write Ta = UDaV T and Tb = UDbV T where the columns of U and V are ui and vi
respectively.

Lemma 3.1.5 The eigenvectors of Ta(Tb)+ and Tb(Ta)+ are U and V respectively
(after rescaling)

Proof: We can use the above formula for Ta and Tb and compute

Ta(Tb)
+ = UDaDb

+U+

D+Then almost surely over the choice of a and b we have that the diagonals of Da b
will be distinct – this is where we use the condition that each pair of vectors in {wi}i
is linearly independent.

∑

∑ ∑
〈 〉 〈 〉

30 CHAPTER 3. TENSOR METHODS

Hence the above formula for Ta(Tb)+ is an eigendecomposition, and moreover
it is unique because its eigenvalues are distinct. We conclude that the eigenvectors
of Ta(Tb)+ are indeed the columns of U up to rescaling, and similarly for V . •

Now to complete the proof of the theorem, notice that ui and vi as eigen­
vectors of Ta(Tb)+ and Tb(Ta)+ respectively, have eigenvalues of (Da)i,i(Db)

−1 andi,i
)−1 (Again, the diagonals of Da(Db)

+ are distinct almost surely and so
vi is the only eigenvector that ui could be paired with). Since we only have the
factors ui × vi up to scaling, we will need to push the rescaling factor in with wi.
Nevertheless we just need to prove that linear system over the wi’s does not have
more than one solution (it certainly has one).

(Db)i,i(Da i,i .

Definition 3.1.6 The Khatri-Rao product ⊗KR between two matrices U and V
with the same number of columns is

U ⊗KR V = ui ⊗ vi
i

That is the Khatri-Rao product of U and V of size m × r and n × r is an mn × r
matrix whose ith column is the tensor product of the ith column of U and the ith
column of V . The following lemma we leave as an exercise to the reader:

Lemma 3.1.7 If U and V are size m × r and n × r and have full column rank and
r ≤ m + n − 1 then U ⊗KR V has full column rank too.

This immediately implies that the linear system over the wi’s has a unique solution.
This completes the proof of the theorem.

Note that if T is size m×n×p then the conditions of the theorem can only hold
if r ≤ min(m, n). There are extensions of the above algorithm that work for higher
order tensors even if r is larger than any of the dimensions of its factors [48], [66],
[26] and there are interesting applications to overcomplete independent component
analysis [66] and learning mixtures of many Gaussians [26], [11].

In the next section, we will show that the above algorithm is stable – in all of
the applications in learning we will estimate T from our samples and hence we do
not have T exactly.

3.2 Perturbation Bounds

In the last section, we gave an algorithm for tensor decomposition when the fac­
tors are full-rank, and in this setting its decomposition is unique (up to rescaling).

31 3.2. PERTURBATION BOUNDS

However in all of our applications we will not be given T exactly but rather we will
compute an approximation to it from our samples. Our main goal in this section is
to show that even in the presence of noise, the algorithm in Theorem 3.1.3 recovers
factors close to the true factors. In later sections, we will simply assume we are given
the true tensor T and what we present here is what justifies this simplification.

This section is somewhat technical, and the reader can feel free to skip it.

Recall that the main step in Theorem 3.1.3 is to compute an eigendecompo­
sition. Hence our first goal is to establish conditions under which the eigendecom­
position itself is stable. More precisely, let M = UDU−1, where D is a diagonal
matrix. If we are given W= M + E, when can we recover good estimates to U?M

Intuitively, if any of the diagonal entries in D are close or if U is ill-conditioned,
then even a small perturbation E can drastically change the eigendecomposition. We
will prove that these are the only things that can go wrong. There will be two main
steps. First we need to prove that WM is diagonalizable, and then we can show that
the matrix that diagonalizes it must be close to the one that diagonalizes M .

Condition Number

Definition 3.2.1 The condition number of a matrix M is defined as

σmax(M)
κ(M) := ,

σmin(M)

where σmax(M) and σmin(M) are the maximum and minimum singular values of M ,
respectively.

Consider the basic problem of solving for x in Mx = b. Suppose that we are
given M exactly, but we only know an estimate Ab = b + e of b. Here e is an error
term. By solving the equation Mx = b using Ab instead of b, we obtain an estimate
xA for x. How close is xA to x?

We have xA = M−1Ab = x + M−1e = x + M−1(Ab − b). So

Ix − xAI ≤
1 Ib − AbI.

σmin(M)

Since Mx = b, we also have IbI ≤ σmax(M)IxI. It follows that

Ix − xAI σmax(M) Ib − AbI Ib − AbI ≤ = κ(M) .
IxI σmin(M) IbI IbI

In other words, the condition number controls the relative error when solving a linear
system.

32 CHAPTER 3. TENSOR METHODS

Gershgorin’s Disk Theorem

Recall our first intermediate goal is to show that M + E is diagonalizable, and we
will invoke the following theorem:

Theorem 3.2.2 The eigenvalues of a matrix M are all contained in the following
union of disks in the complex plane:

n
D(Mii, Ri)

i=1

where D(a, b) := {x | Ix − aI ≤ b} ⊆ C and Ri = j=i |Mij |.#

Proof: Let (x, λ) be an eigenvector-eigenvalue pair (note that this is valid even
when M is not diagonalizable). Let i denote the coordinate of x with the maximum
absolute value. Then Mx = λx gives j Mij xj = λxi. So # Mij xj = λxi −Miixi.j=i
We conclude:

|λ − Mii| =

 r r xj

Mij ≤ |Mij | = Ri.
xi

j #=i j≤i

Thus λ ∈ D(Mii, Ri). •

Part 1

Now let us return to the question posed at the beginning of the previous section: is
M diagonalizable? Consider W

U−1 WMU = D + U−1EU.

WWM is diagonalizable proceeds as follows:

Part (a) Since

The proof that

M and U−1 WMU are similar matrices, they have the same set
of eigenvalues.

Part (b) Moreover we can apply Theorem 3.2.2 to U−1MU W = D + U−1EU
and if U is well-conditioned and E is sufficiently small, the radii will be much
smaller than the closest pair of diagonal entries in D. Hence we conclude that the
eigenvalues of U−1 WMU and also those of WM are distinct, and hence the latter can
be diagonalized.

Thanks to Santosh Vempala for pointing out an error in the original analysis;
see also [66] for a more detailed proof along these lines.

∑
6

∑ ∑
6

6

33 3.2. PERTURBATION BOUNDS

Part 2

M U ALet W = ADUA−1 . Now we can turn to our second intermediate goal, namely how
does this compare to the actual diagonalization M = UDU−1? AMore specifically, if (uAi, λi) and (ui, λi) are corresponding eigenvector-eigenvalue
pairs for W ui, λAi) to (ui, λi)? Using the argument M and M respectively, how close is (A
in Part 1 we know that λAi ≈ λi for each i. Furthermore, we assume that when
i = j, the eigenvalues of M have sufficient separation. It remains to check that
uAi ≈ ui. Let r

cj uj = uAi.
j

Recall that W = M + E. M ,M Left-multiplying both sides of the equation above by W
we get r r

cj λj uj + EuAi = λAiuAi. =⇒ cj (λj − λAi)uj = −EuAi.
j j

Let wj
T be the jth row of U−1 . Left-multiplying both sides of the above equation by

wj
T , we get

cj (λj − Aλi) = −wj
T EuAi.

Recall we have assumed that the eigenvalues of M are separated. Hence if E is
sufficiently small we have that λj − Aλi is bounded away from zero. Then we can
bound the cj’s and this implies that uAi and ui are close.

We can qualitatively restate this as follows: Let δ be the separation be­
tween the closest pair of eigenvalues of M and let κ be the condition number of
U . Then if IEI ≤ poly(1/n, 1/κ, δ) the norm of the error satisfies IUA − UI ≤
poly(1/n, 1/κ, δ, IEI).

Back to Tensor Decompositions

We will introduce some notation to explain the application to tensor decompositions.
Let “→” signify that one matrix converges to another at an inverse polynomial rate
(as a function of the number of samples). For example, TA → T when TA represents
the empirical moments of a distribution (with bounded moments) and T represents
its true moments. Also TAa = TA(∗, ∗, a) → Ta and similarly for b.

We leave it as an exercise to the reader to check that TAb
+ → Tb

+ under natural A TA+ T +conditions. It follows that → Ta b . We have already established that if Ta b
E → 0, then the eigendecompositions of M and M + E converge. Finally we A Aconclude that the algorithm in Theorem 3.1.3 computes factors U and V which

6 =

34 CHAPTER 3. TENSOR METHODS

converge to the true factors U and V at an inverse polynomial rate, and a similar
proof works for WW and W as well.

Open Problem: Kruskal rank

We conclude this section with an open problem.

Definition 3.2.3 The Kruskal rank of a set of vectors {ui}i is the maximum r such
that all subset of r vectors are linearly independent.

We will see later that it is NP -hard to compute the Kruskal rank. Nevertheless, there
are strong uniqueness theorems for tensor decompositions (based on this parameter)
for which there is no known algorithmic proof:

Theorem 3.2.4 (Kruskal) Let T = r
i=1 ui ⊗ vi ⊗ wi and let ku, kv and kw be the

Kruskal ranks of {ui}i, {vi}i, and {wi}i respectively. If ku + kv + kw ≥ 2r + 2 then
T has rank r and this decomposition of T is unique up to rescaling.

Open Question 1 Is there an efficient algorithm for tensor decompositions under
any natural conditions, for r = (1 + ε)n for any ε > 0?

For example, it is natural to consider a smoothed analysis model for tensor decompo­
sition [26] where the factors of T are perturbed and hence not adversarially chosen.
The above uniqueness theorem would apply up to r = 3/2n − O(1) but there are no
known algorithms for tensor decomposition in this model for r = (1+ t)n (although
there are much better algorithms for higher-order tensors).

3.3 Phylogenetic Trees and HMMs

Here we describe an application of tensor decompositions to phylogenetic recon­
struction and HMMs.

The Model

A phylogenetic model has the following components:

(a) A rooted binary tree with root r, where the leaves do not necessarily have the
same depth.

∑

35 3.3. PHYLOGENETIC TREES AND HMMS

The biological interpretation is that the leaves represent extant species (ones that
are still living), and the internal nodes represent speciation events.

(b) A set Σ of states, for example Σ = {A, C, G, T }. Let k = |Σ|.

(c) A Markov model on the tree; i.e. a distribution πr on the state of the root and
a transition P uv matrix for each edge (u, v).

We can generate a sample from the model as follows: We choose a state for the
root according to πr and for each node v with parent u we choose the state of v
according to the distribution defined by the ith row of P uv, where i is the state of
u. Alternatively, we can think of s(·) : V → Σ as a random function that assigns
states to vertices where the marginal distribution on s(r) is πr and

P uv = P(s(v) = j|s(u) = i),ij

Note that s(v) is independent of s(t) conditioned on s(u) whenever the (unique)
shortest path from v to t in the tree passes through u.

Our goal is to learn the above model - both the tree and the transition ma­
trices - from a polynomial number of random samples. We will assume that the
transition matrices are full rank, in which case it is easy to see that we could root
the tree arbitrarily. To connect this back with biology, here we are assuming we
have sequenced each of the extant species and that moreover these sequences have
already been properly aligned. We think of the ith symbol in each of these sequences
as being an independent sample from the above model, and we want to reconstruct
the evolutionary tree that led to the species we have today as well as get some un­
derstanding of how long these evolutionary branches were. We mention as a caveat
that one of the most interesting and challenging problems in computational biology
is to perform multiple sequence alignment, and here we have assumed that a fully
aligned set of sequences is our starting point. Moreover our model for evolution is
simplistic in that we only only point mutations instead of insertions, deletions and
cross-over.

This is really two separate learning goals: Our approach for finding the topol­
ogy will follow the foundational work of Steel [109] and Erdos, Steel, Szekely, and
Warnow [57]. And from this, we can apply tensor methods to find the transition
matrices following the approach of Chang [36] and later Mossel and Roch [96].

Finding the Topology

The basic idea here is to define an appropriate distance function [109] on the edges
of the tree, so that we can approximately compute the distance between leaves from
our samples and then construct the tree.

� �

36 CHAPTER 3. TENSOR METHODS

Defining a Tree Metric

Suppose first that, for leaves a and b, we have access to the true values of F ab, where

F ab
ij = P(s(a) = i, s(b) = j).

In [109], Steel defined a distance metric on the tree in a way that allows us to
compute the distances between leaves a and b, given F ab . In particular, let

ψab := − ln |det(F ab)|.

Steel showed that r
ψab = νuv,

(u,v)∈pab

where pab is the unique path in the tree from a to b, and ⎛ ⎞ ⎛ ⎞
1 1

νuv = − ln |det(P uv)| + ln ⎝ πu(i)⎠ − ln ⎝ πv(i)⎠ .
2 2

i∈[k] i∈[k]

He then showed that νuv is always non-negative (which is not obvious), and hence
ψ is indeed a metric.

The important point is that we can estimate F ab from our samples, and hence
we can (approximately) compute ψab on the leaves.

Reconstructing Quartets

Here we will use ψ to compute the topology. Fix four leaves a, b, c, and d, and
there are exactly three possible induced topologies between these leaves, given in
Figure 3.1. (Here by induced topology, we mean delete edges not on any shortest
path between any pair of the four leaves, and contract paths to a single edge if possi­
ble). Our goal is to determine which of these induced topologies is the true topology,
given the pairwise distances. Consider topology (a) on the left of Figure 3.1; in this
case, we have

ψ(a, b) + ψ(c, d) < min {ψ(a, c) + ψ(b, c), ψ(a, d) + ψ(b, d)} ,

Thus we can determine which is the true induced topology by computing three
values ψ(a, b) + ψ(c, d), ψ(a, c) + ψ(b, c), and ψ(a, d) + ψ(b, d). Whichever is the
smallest determines the induced topology because whichever nodes are paired up
are the ones with a common parent (again in the induced topology).

�

�

� � �

�

37 3.3. PHYLOGENETIC TREES AND HMMS

a	

d	

c	

b	

a	

d	

b	

c	

a	

c	

b	

d	

(a) (b) (c)

Figure 3.1: Possible quartet topologies

Indeed from just these quartet tests we can recover the topology of the tree.
For example, a pair of leaves a, b have the same parent if and only if these nodes
always have a common parent in the induced topology for each quartet test. Hence
we can pair up all of the leaves so that they have the same parent, and it is not hard
to extend this approach to recover the topology of the tree.

Handling Noise

Note that we can only approximate F ab from our samples. This translates into a
good approximation of ψab when a and b are close, but is noisy when a and b are
far away. The approach in [57] of Erdos, Steel, Szekely, and Warnow is to only use
quartets where all of the distances are short.

Finding the Transition Matrices

Here we will assume that we know the topology of the tree and T abc for all triplets
a, b, c of leaves, where

T abc
ijk = P(s(a) = i, s(b) = j, s(c) = k).

(which we can approximate from random samples). Then consider the unique node
that lies on all of the shortest paths among a, b, and c; since we can reroot the tree
arbitrarily let this node be r. Then r
T abc = P(s(r) = f)P(s(a) = ·|s(r) = f) ⊗ P(s(b) = ·|s(r) = f) ⊗ P(s(c) = ·|s(r) = f) r

= P(s(r) = f)P ra ⊗ P rb ⊗ P rc

where we have used P rx to denote the fth row of the transition matrix P rx .

`

`

` ` `

`

38 CHAPTER 3. TENSOR METHODS

We can now apply the algorithm in Section 3.1 to compute a tensor decom­
position of T whose factors are unique up to rescaling. Furthermore the factors are
probability distributions and hence we can compute their proper normalization. We
will call this procedure a star test. (Indeed, the algorithm for tensor decompositions
in Section 3.1 has been re-discovered many times and it is also called Chang’s lemma
[36]).

In [96], Mossel and Roch use this approach to find the transition matrices of
a phylogenetic tree, given the tree topology, as follows. Let us assume that u and
v are internal nodes and that w is a leaf. Furthermore suppose that v lies on the
shortest path between u and w. The basic idea is to write

P uw = P uvP vw

and if we can find P uw and P vw (using the star tests above) then we can compute
P uv = P uw(P vw)−1 since we have assumed that the transition matrices are invertible.

However there are two serious complications:

(a) As in the case of finding the topology, long paths are very noisy.

Mossel and Roch showed that one can recover the transition matrices also using
only queries to short paths.

(b) We can only recover the tensor decomposition up to relabeling.

In the above star test, we could apply any permutation to the states of r and permute
the rows of the transition matrices P ra , P rb and P rc accordingly so that the resulting
joint distribution on a, b and c is unchanged.

However the approach of Mossel and Roch is to work instead in the framework
of PAC learning [114] where the goal is to learn a generative model that produces
almost the same joint distribution on the leaves. (In particular, if there are multiple
ways to label the internal nodes to produce the same joint distribution on the leaves,
we are indifferent to them).

Remark 3.3.1 HMMs are a special case of phylogenetic trees where the underlying
topology is a caterpillar. But note that for the above algorithm, we need that the
transition matrices and the observation matrices are full-rank.

More precisely, we require that the transition matrices are invertible and that
the observation matrices whose row space correspond to a hidden node and whose
column space correspond to the output symbols each have full row rank.

39 3.3. PHYLOGENETIC TREES AND HMMS

Beyond Full Rank?

The algorithm above assumed that all transition matrices are full rank. In fact if
we remove this assumption, then it is easy to embed an instance of the noisy parity
problem [31] which is a classic hard learning problem. Let us first define this problem
without noise:

Let S ⊂ [n], and choose Xj ∈ {0, 1}n independently and uniformly at random,
for j = 1, . . . ,m. Given Xj and bj = χS (Xj) := i∈S Xj (i) mod 2 for each j, the
goal is to recover S.

This is quite easy: Let A be the matrix whose jth row is Xj and let b be a
column vector whose jth entry is bj . It is straightforward to see that 1S is a solution
to the linear system Ax = b where 1S is the indicator function for S. Furthermore if
we choose Ω(n log n) samples then A is w.h.p. full column rank and so this solution
is unique. We can then find S by solving a linear system over GF (2).

Yet a slight change in the above problem does not change the sample com­
plexity but makes the problem drastically harder. The noisy parity problem is the
same as above but for each j we are independently given the value bj = χS (Xj) with
probably 2/3 and otherwise bj = 1 − χS (Xj). The challenge is that we do not know
which labels have been flipped.

Claim 3.3.2 There is a brute-force algorithm that solves the noisy parity problem
using O(n log n) samples

Proof: For each T , calculate χT (Xj)bj over the samples. Indeed χT (Xj) and bj are
correlated if and only if S = T . •

This algorithm runs in time 2n (roughly). The state-of-the-art due to Blum,
Kalai, and Wasserman [31] has running time and sample complexity 2n/ log n . It is
widely believed that there is no polynomial time algorithm for noisy parity even
given any polynomial number of samples. This is an excellent example of a problem
whose sample complexity and computational complexity are (conjectured) to be wildly
different.

Next we show how to embed samples from a noisy parity problem into an
HMM, however to do so we will make use of transition matrices that are not full
rank. Consider an HMM that has n hidden nodes, where the ith hidden node
encodes is used to represent the ith coordinate of X and the running parity r

χSi (X) := X(i ') mod 2.
i '≤i,i '∈S

∑

40 CHAPTER 3. TENSOR METHODS

Hence each node has four possible states. We can define the following transition
matrices. Let s(i) = (xi, si) be the state of the ith internal node where si = χSi (X).

We can define the following transition matrices:

1
2 (0, si)

P i+1,iif i + 1 ∈ S = 1

⎧⎪⎨ ⎪⎩ ⎧⎪⎨ ⎪⎩

2 (1, si + 1 mod 2)
0 otherwise
1
2 (0, si)

P i+1,iif i + 1 ∈/ S = 1
2 (1, si) .
0 otherwise

At each internal node we observe xi and at the last node we also observe χS (X)
with probability 2/3 and otherwise 1 − χS (X). Each sample from the noisy parity
problem is a set of observations from this HMM, and if we could learn the transition
matrices of it we would necessarily learn S and solve the noisy parity problem.

Note that here the observation matrices are certainly not full rank because
we only observe two possible emissions even though each internal node has four
possible states! Hence these problems become much harder when the transition (or
observation) matrices are not full rank!

3.4 Community Detection

Here we give applications of tensor methods to community detection. There are
many settings in which we would like to discover communities - that is, groups of
people with strong ties. Here we will focus on graph theoretic approaches, where
we will think of a community as a set of nodes that are better connected to each
other than to nodes outside of the set. There are many ways we could formalize this
notion, each of which would lead to a different optimization problem e.g. sparsest
cut or k-densest subgaph.

However each of these optimization problems is NP -hard, and even worse are
hard to approximate. Instead, we will formulate our problem in an average-case
model where there is an underlying community structure that is used to generate a
random graph, and our goal is to recover the true communities from the graph with
high probability.

�

41 3.4. COMMUNITY DETECTION

Block Stochastic Model

Here we introduce the block stochastic model, which is used to generate a random
graph on V with |V | = n. Additionally, the model is specified by parameters p and
q and a partitioning specified by a function π:

•	 π : V → [k] partitions the vertices V into k disjoint groups (we will relax this
condition later);

•	 Each possible edge (u, v) is chosen independently with:

q π(u) = π(v)
Pr[(u, v) ∈ E] =	 .

p otherwise

In our setting we will set q > p, but this model has been studied in cases where
q < p too. (In particular, when q = 0 we could ask to find a k-coloring of this
random graph). Regardless, we observe a random graph generated from the above
model and our goal is to recover the partition described by π.

When is this information theoretically possible? In fact even for k = 2 where
π is a bisection, we need

log n
q − p > Ω

n
in order for the true bisection to be the uniquely smallest cut that bisects the
random graph G with high probability. If q − p is smaller, then it is not even
information theoretically possible to find π. Indeed, we should also require that
each part of the partition is large, and for simplicity we will assume that k = O(1)
and |{u|π(u) = i}| = Ω(n).

There has been a long line of work on partitioning random graphs in the block
stochastic model, culminating in the work of McSherry [91]:

Theorem 3.4.1 [91] There is an efficient algorithm that recovers π (up to relabel­
ing) if

q − p log n/δ
> c

q qn

and succeeds with probability at least 1 − δ.

This algorithm is based on spectral clustering, where we think of the observed adja­
cency matrix as the sum of a rank k matrix which encodes π and an error term. If
the error is small, then we can recover something close to the true rank k matrix by

{

()

�

42 CHAPTER 3. TENSOR METHODS

finding the best rank k approximation to the adjacency matrix. For the full details,
see [91].

We will instead follow the approach in Anandkumar et al [9] that makes use
of tensor decompositions instead. In fact, the algorithm of [9] also works in the
mixed membership model where we allow each node to be a distribution over [k].
Then if πu and πv are the probability distributions for u and v, the probability of
an edge (u, v) is πuπi

vq + i=j π
uπj

vp. We can interpret this probability as: ui i # i
and v choose a community according to πu and πv respectively, and if they choose
the same community there is an edge with probability q and otherwise there is an
edge with probability p.

Recall that in order to apply tensor decomposition methods what we really
need are conditionally independent random variables! In fact we will get such ran­
dom variables based on counting three stars.

Counting Three Stars

We will partition V into four sets (arbitrarily) X, A, B, and C. Let Π ∈ {0, 1}V ×k

represent the (unknown) assignment of vertices to communities, such that each
row of Π contains exactly one 1. Also let R ∈ Rk×k be the matrix describing the
probability of each pair of communities having an edge. In particular,

q i = j
(R)ij = .

p i = j

Consider the product ΠR. The ith column of ΠR encodes the probability that
an edge occurs from a vertex in community i to a given other vertex:

(ΠR)xi = Pr[(x, a) ∈ E|π(a) = i].

We will use (ΠR)Ai to denote the matrix ΠR restricted to the ith column and
the rows in A, and similarly for B and C. Moreover let pi be the fraction of nodes
in X that are in community i. Then consider the following tensor r r

T := piTx = pi(ΠR)
A ⊗ (ΠR)B ⊗ (ΠR)C .i i i

i i

The key claim is:

Claim 3.4.2 Let a ∈ A, b ∈ B and c ∈ C; then Ta,b,c is exactly the probability that
a random node x ∈ X is connected to a, b and c.

∑ ∑
6

{
6

43 3.4. COMMUNITY DETECTION

This is immediate from the definitions above. In particular if we look at whether
(x, a), (x, b) and (x, c) are edges in G, these are conditionally independent random
variables. Then we need to prove:

A(a) If |X| = Ω(|A||B||C|/t2), then we can estimate T accurately

(b) The factors {(ΠR)A}i, {(ΠR)B }i, and {(ΠR)B}i are linearly independent, and i i i
hence the tensor decomposition of T is unique by Theorem 3.1.3

More precisely, we need these factors to be well-conditioned so that we can approx­
imate them from an approximation TA to T . See Section 3.2.

(c) We can recover π from {(ΠR)A}i up to relabeling. i

Part (a) Let {Xa,b,c}a,b,c be a partition of X into almost equal sized sets, one for
each a ∈ A, b ∈ B and c ∈ C. Then

|{x ∈ Xa,b,c|(x, a), (x, b), (x, c) ∈ E}|ATa,b,c =
|Xa,b,c|

will be close to Ta,b,c with high probability. We can then use a union bound.

Part (b) It is easy to see that R is full rank and moreover if we choose A, B and
C at random then if each community is large enough, with high probability each
community will be well-represented in A, B and C and hence the factors {(ΠR)A}i,i
{(ΠR)B }i, and {(ΠR)B }i will be non-negligibly far from linearly dependent. i i

Part (c) Note that if we have a good approximation to {(ΠR)A}i then we can i
partition A into communities. In turn, if A is large enough then we can extend this
partitioning to the whole graph: We add a node x /∈ A to community i if and only if
the fraction of nodes a ∈ A with π(a) = i that x is connected to is close to q. With
high probability, this will recover the true communities.

However for a full proof of the algorithm see [9]. Anandkumar et al also give an
algorithm for mixed membership models where each πu is chosen from a Dirichlet.
We will not cover this latter extension because we will instead explain those types
of techniques in the setting of topic models next.

We note that there are powerful extensions to the block-stochastic model that
are called semi-random models. Roughly, these models allow an “adversary” to add
edges between nodes in the same cluster and delete edges between clusters after G

44 CHAPTER 3. TENSOR METHODS

is generated. If π is the best partitioning of G, then this is only more true after the
changes. Interestingly, many spectral algorithms breakdown in this more flexible
model, but there are elegant techniques for recovering π even in this more general
setting (see [60], [59]).

3.5 Extensions to Mixed Models

Here we will extend tensor spectral models to work with (some) mixed models.

Pure Topic Model

First we describe an easy application of tensor methods to pure topic models (see
[10]). Recall that there is an unknown topic matrix A and we obtain samples from
the following model:

(a) Choose topic i for document j with probability pi

(b) Choose Nj words according to the distribution Ai

If each document has at least three words, we can define the tensor TA where TAa,b,c
counts the fraction of documents in our sample whose first word, second word and
third word are a, b and c respectively. Then it is easy to see that if the number of
documents is large enough then TA converges to:

rr
T = piAi ⊗ Ai ⊗ Ai

i=1

In order to apply the algorithm in Section 3.1, we just need that A has full column
rank. In this case the factors in the decomposition are unique up to rescaling, and
the algorithm will find them. Finally, each column in A is a distribution and so
we can properly normalize these columns and compute the values pi too. Recall in
Section 3.2 we analyzed the noise tolerance of our tensor decomposition algorithm. AIt is easy to see that this algorithm recovers a topic matrix A and a distribution
{pAi}i that is t-close to A and {pi}i respectively with high probability if we are given
at least poly(n, 1/t, 1/σr) documents of length at least three, where n is the size of
the vocabulary and σr is the smallest singular value of A.

We will refer to this as an application of tensor methods to pure models, since
each document is described by one and only one topic. Similarly, in our applica­
tion to community detection, each node belonged to one and only one community.

�

45 3.5. EXTENSIONS TO MIXED MODELS

Finally, in our application to phylogenetic reconstruction, each hidden node was in
one and only one state. Note however that in the context of topic models, it is much
more realistic to assume that each document is itself a mixture of topics and we will
refer to these as mixed models.

Latent Dirichlet Allocation

Here we will give a tensor spectral algorithm for learning a very popular mixed
model, called Latent Dirichlet Allocation [30]. Let Δ := {x ∈ Rr : x ≥ 0, xi = 1}i
denotes the r-dimensional simplex. Then we obtain samples from the following
model:

(a) Choose a mixture over topics wj ∈ Δ for document j according to the Dirichlet
distribution Dir({αi}i)

(b) Repeat Nj times: choose a topic i from wj , and choose a word according to
the distribution Ai.

The Dirichlet distribution is defined as

p(x) ∝ xi
αi−1 for x ∈ Δ

i

Note that if documents are long (say Nj > n log n) then in a pure topic model, pairs
of documents often have nearly identical empirical distributions on words. But this
is no longer the case in mixed models like the one above.

The basic issue in extending our tensor spectral approach to mixed models is
that the tensor TA that counts triples of words converges to r

T = DijkAi ⊗ Aj ⊗ Ak
ijk

where Di,j,k is the probability that the first three words in a random document are
generated from topics i, j and k respectively. In a pure topic model, Di,j,k was
diagonal but for a mixed model it is not!

Definition 3.5.1 A Tucker decomposition of T is r
T = Di,j,kai ⊗ bj ⊗ ck

i,j,k

where D is r1 × r2 × r3. We call D the core tensor.

∑

∏

46 CHAPTER 3. TENSOR METHODS

This is different than the standard definition for a tensor decomposition where we
only summed over i = j = k. The good news is that computing a Tucker decom­
position of a tensor is easy. Indeed we can always set r1 equal to the dimension of
span({Ti,∗,∗}i), and similarly for r2 and r3. However the bad news is that a Tucker
decomposition is in general not unique, so even if we are given T we cannot nec­
essarily compute the above decomposition whose factors are the topics in the topic
model.

How can we extend the tensor spectral approach to work with mixed models?
The elegant approach of Anandkumar et al [8] is based on the following idea:

Lemma 3.5.2 r
T = DijkAi ⊗ Aj ⊗ Ak

ijk r
S = DAijkAi ⊗ Aj ⊗ Ak

ijk r
=⇒ T − S = (Dijk − DAijk)Ai ⊗ Aj ⊗ Ak

ijk

Proof: The proof is a simple exercise in multilinear algebra. •

Hence if we have access to other tensors S which can be written using the same
factors {Ai}i in its Tucker decomposition, we can subtract T and S and hope to
make the core tensor diagonal. We can think of D as being the third order moments
of a Dirichlet distribution in our setting. What other tensors do we have access to?

Other Tensors

We described the tensor T based on the following experiment: Let Ta,b,c be the prob­
ability that the first three words in a random document are a, b and c respectively.
But we could just as well consider alternative experiments. The three experiments
we will need in order to given a tensor spectral algorithm for LDA are:

(a) Choose three documents at random, and look at the first word of each docu­
ment

(b) Choose two documents at random, and look at the first two words of the first
document and the first word of the second document

(c) Choose a document at random, and look at its first three words

47 3.5. EXTENSIONS TO MIXED MODELS

These experiments result in tensors whose factors are the same, but whose cores
differ in their natural Tucker decomposition.

Definition 3.5.3 Let µ, M and D be the first, second and third order moments of
the Dirichlet distribution.

More precisely, let µi be the probability that the first word in a random document
was generated from topic i. Let Mi,j be the probability that the first and second
words in a random document are generated from topics i and j respectively. And as
before, let Di,j,k be the probability that the first three words in a random document
are generated from topics i, j and k respectively. Then letT 1 , T 2 and T 3 be the
expectation of the first, second and third experiments respectively.

Lemma 3.5.4 (a) T 1 = [µ ⊗ µ ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(b) T 2 = [M ⊗ µ]i,j,kAi ⊗ Aj ⊗ Aki,j,k

(c) T 3 = i,j,k Di,j,kAi ⊗ Aj ⊗ Ak

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and similarly
for the other words). We can expand P[w1 = a, w2 = b, w3 = c] as: r

P[w1 = a, w2 = b, w3 = c|t1 = i, t2 = j, t3 = k]P[t1 = i, t2 = j, t3 = k]
i,j,k

and the lemma is now immediate. •

Note that T 2 = T 2 because two of the words come from the same document. a,b,c a,c,b
Nevertheless, we can symmetrize T 2 in the natural way: Set Sa,b,c

2
a,b,c + T 2= T 2

b,c,a +
T 2 Hence S2 = S2 for any permutation π : {a, b, c} → {a, b, c}.c,a,b. a,b,c π(a),π(b),π(c)

Our main goal is to prove the following identity:

α2D + 2(α0 + 1)(α0 + 2)µ ⊗3 − α0(α0 + 2)M ⊗ µ(all three ways) = diag({pi}i)0

where α0 = i αi. Hence we have that r
α0
2T 3 + 2(α0 + 1)(α0 + 2)T 1 − α0(α0 + 2)S2 = piAi ⊗ Ai ⊗ Ai

i

The important point is that we can estimate the terms on the left hand side from our
sample (if we assume we know α0) and we can apply the algorithm from Section 3.1
to the tensor on the right hand side to recover the topic model, provided that A has
full column rank. In fact, we can compute α0 from our samples (see [8]) but we will
focus instead on proving the above identity.

∑
∑
∑

6=

∑

�

48 CHAPTER 3. TENSOR METHODS

Moments of the Dirichlet

The main identity that we would like to establish is just a statement about the
moments of a Dirichlet distribution. In fact, we can think about the Dirichlet as
instead being defined by the following combinatorial process:

(a) Initially, there are αi balls of each color i

(b) Repeat C times: choose a ball at random, place it back with one more of its
own color

This process gives an alternative characterization of the Dirichlet distribution, from
which it is straightforward to calculate:

α2 αr(a) µ = [α1 , , ...,]
α0 α0 α0

αi(αi+1) i = j
α0(α0+1)(b) Mi,j = .αiαj otherwise
α0(α0+1)

(c) Ti,j,k =

⎧ ⎪⎨ ⎪⎩

αi(αi+1)(αi+2) i = j = k
α0(α0+1)(α0+2)

αi(αi+1)αk i = j = k .
α0(α0+1)(α0+2)

αiαj αk i, j, k distinct
α0(α0+1)(α0+2)

For example for Ti,i,k this is the probability that the first two balls are color i and
the third ball is color k. The probably that the first ball is color i is

α
α

0
i and since

we place it back with one more of its own color, the probability that the second ball
αi+1 αkis color i as well is . And the probability that the third ball is color k is .
α0+1 α0+2

It is easy to check the above formulas in the other cases too.

Note that it is much easier to think about only the numerators in the above
formulas. If we can prove that following relation for just the numerators

D + 2µ ⊗3 − M ⊗ µ(all three ways) = diag({2αi}i)

it is easy to check that we would obtain our desired formula by multiplying through
by α3

0(α0 + 1)(α0 + 2).

Definition 3.5.5 Let R = num(D) + num(2µ⊗3) − num(M ⊗ µ)(all three ways)

Then the main lemma is:

{

6=

49 3.5. EXTENSIONS TO MIXED MODELS

Lemma 3.5.6 R = diag({2αi}i)

We will establish this by a case analysis:

Claim 3.5.7 If i, j, k are distinct then Ri,j,k = 0

This is immediate since the i, j, k numerator of D, µ⊗3 and M ⊗ µ are all αiαj αk.

Claim 3.5.8 Ri,i,i = 2αi

This is also immediate since the i, i, i numerator of D is αi(αi + 1)(αi + 2) and
similarly the numerator of µ⊗3 is αi

3 . Finally, the i, i, i numerator of M ⊗ µ is
αi
2(αi + 1). The case that requires some care is:

Claim 3.5.9 If i = k, Ri,i,k = 0

The reason this case is tricky is because the terms M ⊗ µ(all three ways) do not
all count the same. If we think of µ along the third dimension of the tensor then
the ith topic occurs twice in the same document, but if instead we think of µ as
along either the first or second dimension of the tensor, even though the ith topic
occurs twice it does not occur twice in the same document. Hence the numerator
of M ⊗ µ(all three ways) is αi(αi + 1)αk + 2αi

2αk. Also, the numerator of D is
αi(αi + 1)αk and the numerator of µ⊗3 is again αi

2αk.

These three claims together establish the above lemma. Even though the
tensor T 3 that we could immediately decompose in a pure topic model no longer
has a diagonal core tensor in a mixed model, at least in the case of LDA we can
still find a formula (each of whose terms we can estimate from our samples) that
diagonalizes the core tensor. This yields:

Theorem 3.5.10 [8] There is a polynomial time algorithm to learn a topic matrix AA that is t close to the true A in a Latent Dirichlet Allocation model, provided we
are given at least poly(n, 1/t, 1/σr, 1/αmin) documents of length at least thee, where
n is the size of the vocabulary and σr is the smallest singular value of A and αmin
is the smallest αi.

Similarly, there are algorithms for community detection in mixed models too, where
for each node u we choose a distribution πu over clusters from a Dirichlet distribution
[9]. However these algorithms seem to be quite dependent on the assumption that
we use a Dirichlet distribution, and it seems hard to generalize these algorithms to
any other natural distributions.

6=

50 CHAPTER 3. TENSOR METHODS

3.6 Independent Component Analysis

We can think about the tensor methods we have developed as a way to use higher
order moments to learn the parameters of a distribution (e.g. for phylogenetic
trees, HMMs, LDA, community detection) through tensor decomposition. Here we
will give another style of using the method of moments through an application to
independent component analysis which was introduced by Comon [42].

This problem is simple to define: Suppose we are given samples of the form

y = Ax + b

where we know that the variables xi are independent and the linear transformation
(A, b) is unknown. The goal is to learn A, b efficiently from a polynomial number
of samples. This problem has a long history, and the typical motivation for it is to
consider a hypothetical situation called the cocktail party problem

We have N microphones and N conversations going on in an room.
Each microphone hears a superposition of the conversations given by the
corresponding rows of A. If we think of the conversations as independent
and memoryless, can we disentangle them?

Such problems are also often referred to as blind source separation. We will follow
an approach of Frieze, Jerrum and Kannan [62].

Step 1

We can always transform the problem y = Ax + b into y = AAxA+Ab so that E[xAi] = 0
2and E[xAi] = 1 for all i by setting Ab = b + A E[x] and AAi = Aistd(xi) where std(xi) is

the standard deviation of xi.

Note that the distribution on y has not changed, but we have put (A, x) into a
canonical form since we anyways cannot distinguish between a pair of linear trans­
formations that have the same canonical form. So without loss of generality we have
reduced to the problem of learning

y = Ax + b

where for all i, E[xi] = 0, E[xi 2] = 1. Also we can set b = 0 since we can easily learn
b. The crucial assumption that we will make is that A is non-singular.

� �

51 3.6. INDEPENDENT COMPONENT ANALYSIS

Step 2

E[yyT] = E[AxxT AT] = AAT

The last equality follows from the condition that E[xi] = 0, E[x2
i] = 1 and each xi is

independent. Hence we have access to M = AAT which we can learn up to arbitrary
precision by taking sufficiently many random samples. But what does this tell us
about A? We have encountered this problem before: M does not uniquely define A,
and our approach was to consider higher order tensors. This time we will proceed
in a different manner.

Since M > 0 we can find B such that M = BBT . How are B and A related?

In fact, we can write

BBT = AAT ⇒ B−1AAT (B−1)T = I

and this implies that B−1A is orthogonal since a square matrix times its own trans­
pose is the identity if and only if it is orthogonal. So we have learned A up to an
unknown rotation. Can we hope to learn the rotation R = B−1A? Hint: what if
each xi is a standard Gaussian?

In this case, Rx is also a spherical Gaussian and hence we cannot hope to
learn R without an additional assumption. In fact, this is the only case that can go
wrong: Provided the xi’s are not Gaussian, we will be able to learn R and hence A.
For simplicity let us assume that each xi is ±1 hence E[xi 4] = 1 and yet the fourth
moment of a Gaussian is three. Note that we can apply B−1 to our samples and
hence we can imagine that we are getting samples from y = Rx. The key to our
analysis is the following functional

F (u) := E[(u T Rx)4]

As u ranges over the unit sphere, so does vT = uT R and so instead of minimiz­
ing F (u) over unit vectors u we can instead work with the following equivalent
optimization problem:

min E[(v T x)4]
�v�2=1

What are its local minima?

 r r
E (v T x)4 = E (vixi)

4 + 6 (vixi)
2(vj xj)

2 =
i ij r r r r r

= v 4
i E(x 4

i) + 6 v 2
i v 2

j + 3 v 4
i − 3 v 4

i + 3(v 2
i)

i ij i i i

=
r

v 4
i E

x 4
i

− 3 + 3

i

()

52 CHAPTER 3. TENSOR METHODS

Hence the local minima of F (v) correspond exactly to setting vi = ±1 for some i.
Recall that vT = uT R and so this characterization implies that the local minima of
F (u) correspond to setting u to be a column of ±R.

The algorithm proceeds by using gradient descent (and a lower bound on the
Hessian) to show that you can find a local optima of F (u) quickly, and we can
then recurse on the orthogonal complement to the vector we have found to find the
other columns of R. This idea requires some care to show that the errors do not
accumulate too badly, see [62], [116], [16].

In fact what we just computed are the cumulants that are an alternative basis
for the moments of a distribution. Often these are much easier to work with since
they satisfy the appealing property that the cumulants of the sum of independent
variables Xi and Xj are the themselves the sum of the cumulants of Xi and Xj .
This is precisely the property we exploited here.

MIT OpenCourseWare
http://ocw.mit.edu

18.409 Algorithmic Aspects of Machine Learning
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/

