
Chapter 4

Sparse Recovery

In this chapter we will study algorithms for sparse recovery: given a matrix A and
a vector b that is a sparse linear combination of its columns – i.e. Ax = b and x is
sparse – when can solve for x?

4.1 Basics

Throughout this section, we will consider only linear systems Ax = b where A has
more columns than rows. Hence there is more than one solution for x (if there is
any solution at all), and we will be interested in finding the solution that has the
smallest number of non-zeros:

Definition 4.1.1 Let IxI0 be the number of non-zero entries of x.

Unfortunately finding the sparsest solution to a system of linear equations in full
generality is computationally hard, but there will be a number of important examples
where we can solve for x efficiently.

Question 7 When can we find for the sparsest solution to Ax = b?

A trivial observation is that we can recover x when A has full column rank. In
this case we can set x = A+b, where A+ is the left-pseudo inverse of A. Note that
this procedure works regardless of whether or not x is sparse. In contrast, when A
has more columns than rows we will need to take advantage of the sparsity of x. We
will show that under certain conditions on A, if x is sparse enough then indeed it is
the uniquely sparsest solution to Ax = b.

53

Algorithmic Aspects of Machine Learning
© 2015 by Ankur Moitra.
Note: These are unpolished, incomplete course notes.
Developed for educational use at MIT and for publication through MIT OpenCourseware.

54 CHAPTER 4. SPARSE RECOVERY

Our first goal is to prove that finding the sparsest solution to a linear system
is hard. We will begin with the related problem:

Problem 1 (P) Find the sparsest non-zero vector x in a given subspace S

Khachiyan [81] proved that this problem is NP -hard, and this result has many
interesting applications that we will discuss later.

Reduction from Subset Sum

We reduce from the following variant of subset sum:

Problem 2 (S) Given distinct values α1, . . . , αm ∈ R, does there exist a set I ⊆ [m]
such that |I| = n and αi = 0?i∈I

We will embed an instance of this problem into the problem of finding the
sparsest non-zero vector in a given subspace. We will make use of the following
mapping which is called the weird moment curve: ⎤ ⎡

Γw(αi) ⇒

⎢⎢⎢⎢⎢⎢⎣

1
αi
α2
i

. . .
αn−2
i
αn
i

⎥⎥⎥⎥⎥⎥⎦
∈ Rn

Note that this differs from the standard moment curve since the weird moment curve
has αi

n instead of αi
n−1 .

Claim 4.1.2 A set I with |I| = n has αi = 0 if and only if the set of vectors i∈I
{Γw(αi)}i∈I is linearly dependent.

Proof: Consider the determinant of the matrix whose columns are {Γw(αi)}i∈I .
Then the proof is based on the following observations:

(a) The determinant is a polynomial in the variables αi with total degree n
2 + 1,

which can be seen by writing the determinant in terms of its Laplace expansion
(see e.g. [74]).

(b) Moreover the determinant is divisible by i<j αi − αj , since the determinant
is zero if any αi = αj .

∑

∑

()

 �
55 4.1. BASICS

Hence we can write the determinant as r
(αi − αj) αi

i<j i∈I
i,j∈I

We have assumed that the αi’s are distinct, and consequently the determinant is
zero if and only if the sum of αi = 0. •

We can now complete the proof that finding the sparsest non-zero vector in a
subspace is hard: We can set A to be the n × m matrix whose columns are Γw(αi),
and let S = ker(A). Then there is a vector x ∈ S with IxI0 = n if and only if there
is a subset I with |I| = n whose corresponding submatrix is singular. If there is
no such set I then any x ∈ S has IxI0 > n. Hence if we could find the sparsest
non-zero vector in S we could solve the above variant of subset sum.

In fact, this same proof immediately yields an interesting result in computa­
tional geometry (that was “open” several years after Khachiyan’s paper).

Definition 4.1.3 A set of m vectors in Rn is in general position if every set of at
most n vectors is linearly independent.

From the above reduction we get that it is hard to decide whether a set of m
vectors in Rn is in general position or not (since there is an I with |I| = n whose
submatrix is singular if and only if the vectors Γw(αi) are not in general position).

Now we return to our original problem:

Problem 3 (Q) Find the sparsest solution x to Ax = b

There is a subtle difference between (P) and (Q) since in (P) we restrict to non-zero
vectors x but in (Q) there is no such restriction on x. However there is a simple
many-to-one reduction from (Q) to (P).

Lemma 4.1.4 Finding the sparsest solution x to Ax = b is NP -hard.

Proof: Suppose we are given a linear system Ax = 0 and we would like to find the
sparsest non-zero solution x. Let A−i be equal to the matrix A with he ith column

−i −ideleted. Then for each i, let x be the sparsest solution to A−ix = Ai. Let i∗
be the index where x−i is the sparsest, and suppose Ix−iI0 = k. We can build a
solution x to Ax = 0 with IxI0 = k + 1 by setting the i∗th coordinate of x to be
−1. Indeed, it is not hard to see that x is the sparsest solution to Ax = 0. •

()()∏

56 CHAPTER 4. SPARSE RECOVERY

4.2 Uniqueness and Uncertainty Principles

Incoherence

Here we will define the notion of an incoherent matrix A, and prove that if x is
sparse enough then it is the uniquely sparsest solution to Ax = b.

Definition 4.2.1 The columns of A ∈ Rn×m are µ-incoherent if for all i = j:

|� Ai, Aj �| ≤ µIAiI · IAj I

While the results we derive here can be extended to general A, we will restrict our
attention to the case where IAiI = 1, and hence a matrix is µ-incoherent if for all
i = j, |� Ai, Aj �| ≤ µ.

In fact, incoherent matrices are quite common. Suppose we choose m unit
vetors at random in Rn; then it is not hard to show that these vectors will be

log m 100incoherent with µ = O(
n). Hence even if m = n , these vectors will be

OA(1/
√
n) incoherent. In fact, there are even better constructions of incoherent

vectors that remove the logarithmic factors; this is almost optimal since for any
m > n, any set of m vectors in Rn has incoherence at least √1

n .

We will return to the following example several times: Consider the matrix
A = [I,D], where I ∈ Rn×n is the identity matrix and D ∈ Rn×n is the DFT matrix.

(i−1)(j−1) i 2π
nIn particular, Dij = w √

n where w = e . This is often referred to as the
spikes-and-sines matrix. It is not hard to see that µ = √1

n here.

Uncertainty Principles

The important point is that if A is incoherent, then if x is sparse enough it will be the
uniquely sparsest solution to Ax = b. These types of results were first established
by the pioneering work of Donoho and Stark [53], and are based on establishing an
uncertainty principle.

Lemma 4.2.2 Suppose we have A = [U, V], where U and V are orthogonal. If
b = Uα = V β, then IαI0 + IβI0 ≥

µ
2 .

The interpretation of this result for the spikes-and-sines matrix is that any signal √
must have at least n non-zeros in the standard basis, or in the Fourier basis.

6=

6=

√

57 4.2. UNIQUENESS AND UNCERTAINTY PRINCIPLES

Informally, a signal cannot be too localized in both the time and frequency domains
simultaneously!

Proof: Since U and V are orthonormal we have that IbI2 = IαI2 = IβI2. We
can rewrite b as either Uα or V β and hence IbI2 = |βT (V T U)α|. Because A is2
incoherent, we can conclude that each entry of V T U has absolute value at most
µ(A) and so |βT (V T U)α| ≤ µ(A)IαI1IβI1. Using Cauchy-Schwarz it follows that
IαI1 ≤ IαI0IαI2 and thus

IbI22 ≤ µ(A) IαI0IβI0IαI2IβI2

Rearranging, we have
µ(
1
A) ≤ IαI0IβI0. Finally, applying the AM-GM inequality

we get
µ
2 ≤ IαI0 + IβI0 and this completes the proof. •

Is this result tight? Indeed, returning to the spikes-and-sines example if choose
b to be the comb function, where the signal has equally spaced spikes at distance√ √
n, then b has n non-zeros in the standard basis. Moreover the comb function √

is its own discrete Fourier transform so it also has n non-zeros when represented
using the Fourier basis.

Next, we apply the above uncertainty principle to prove a uniqueness result:

Claim 4.2.3 Suppose A = [U, V] where U and V are orthonormal and A is µ­
incoherent. If Ax = b and IxI0 <

µ
1 , then x is the uniquely sparsest solution.

Proof: Consider any alternative solution AxA = b. Set y = x − xA in which case y ∈
ker(A). Write y as y = [αy, βy]

T and since Ay = 0, we have that Uαy = −V βy. We
can now apply the uncertainty principle and conclude that IyI0 = IαyI0+IβyI0 ≥

µ
2 .

It is easy to see that IxAI0 ≥ IyI0 − IxI0 >
µ
1 and so xA has strictly more non-zeros

than x does, and this completes the proof. •

Indeed, a similar statement is true even if A is an arbitrary incoherent matrix (in­
stead of a union of two orthonormal bases). We will discuss this extension further
in the next section.

Kruskal Rank

We can also work with a more general condition that is more powerful when proving
uniqueness; however this condition is computationally hard to verify, unlike inco­
herence.

√
√

√

58 CHAPTER 4. SPARSE RECOVERY

Definition 4.2.4 The Kruskal rank of a set of vectors {Ai}i is the maximum r such
that all subsets of r vectors are linearly independent.

In fact, we have already proven that it is NP -hard to compute the Kruskal
rank of a given set of points, since deciding whether or not the Kruskal rank is
n is precisely the problem of deciding whether the points are in general position.
Nevertheless, the Kruskal rank of A is the right parameter for analyzing how sparse
x must be in order for it to be the uniquely sparest solution to Ax = b. Suppose
the Kruskal rank of A is r.

Claim 4.2.5 If IxI0 ≤ r/2 then x is the unique sparsest solution to Ax = b.

Proof: Consider any alternative solution AxA = b. Again, we can write y = x − xA in
which case y ∈ ker(A). However IyI0 ≥ r + 1 because every set of r columns of A
is linearly independent, by assumption. Then IxAI0 ≥ IyI0 − IxI0 ≥ r/2 + 1 and so
xA has strictly more non-zeros than x does, and this completes the proof. •

In fact, if A is incoherent we can lower bound its Kruskal rank (and so the
proof in the previous section can be thought of as a special case of the one in this).

Claim 4.2.6 If A is µ-incoherent then the Kruskal rank of the columns of A is at
least 1/µ.

Proof: First we note that if there is a set I of r columns of A that are linearly
dependent, then the I × I submatrix of AT A must be singular. Hence it suffices to
prove that every set I of size r, the I × I submatrix of AT A is full rank for r = 1/µ.

So consider any such a submatrix. The diagonals are one, and the off-diagonals
have absolute value at most µ by assumption. We can now apply Gershgorin’s disk
theorem and conclude that the eigenvalues of the submatrix are strictly greater than
zero provided that r ≤ 1/µ (which implies that the sum of the absolute values of
the off-diagonals in any row is strictly less than one). This completes the proof. •

Hence we can extend the uniqueness result in the previous section to arbitrary
incoherent matrices (instead of just ones that are the union of two orthonormal
bases). Note that this bound differs from our earlier bound by a factor of two.

Corollary 4.2.7 Suppose A is µ-incoherent. If Ax = b and IxI0 <
2
1
µ , then x is

the uniquely sparsest solution.

There are a number of algorithms that recover x up to the uniqueness threshold in
the above corollary, and we will cover one such algorithm next.

� �

�

�

�

� � � �

4.3. PURSUIT ALGORITHMS	 59

4.3 Pursuit Algorithms

Here we will cover algorithms for solving sparse recovery when A is incoherent. The
first such algorithm is matching pursuit and was introduced by Mallat and Zhang
[93]; we will instead analyze orthogonal matching pursuit [99]:

Orthogonal Matching Pursuit
Input: matrix A ∈ Rn×m, vector b ∈ Rn, desired number of nonzero entries k ∈ N.
Output: solution x with at most k nonzero entries.

Initialize: x0 = 0, r0 = Ax0 − b, S = ∅.
For f = 1, 2, . . . , k

|(Aj ,r
�−1)|

Choose column j that maximizes .
Aj	

2
2

Add j to S.
Set r = projU⊥ (b), where U = span(AS).
If r = 0, break.

End
Solve for xS : AS xS = b. Set xS̄ = 0.

Let A be µ-incoherent and suppose that there is a solution x with k < 1/(2µ)
nonzero entries, and hence x is the uniquely sparsest solution to the linear system.
Let T = supp(x). We will prove that orthogonal matching pursuit recovers the true
solution x. Our analysis is based on establishing the following two invariants for our
algorithm:

(a) Each index j the algorithm selects is in T .

(b) Each index j gets chosen at most once.

These two properties immediately imply that orthogonal matching pursuit
recovers the true solution x, because the residual error r will be non-zero until S =
T , and moreover the linear system AT xT = b has a unique solution (since otherwise
x would not be the uniquely sparsest solution, which contradicts the uniqueness
property that we proved in the previous section).

Property (b) is straightforward, because once j ∈ S at every subsequent step
in the algorithm we will have that r ⊥ U , where U = span(AS), so r , Aj = 0 if
j ∈ S. Our main goal is to establish property (a), which we will prove inductively.
The main lemma is:

Lemma 4.3.1 If S ⊆ T at the start of a stage, then the algorithm selects j ∈ T .

‖ ‖

`

`

`

` `〈 〉

�

�

� �

�

�

� �

�

� �

�

�

� �

�

�

�

�

60 CHAPTER 4. SPARSE RECOVERY

We will first prove a helper lemma:

Lemma 4.3.2 If r −1 is supported in T at the start of a stage, then the algorithm
selects j ∈ T .

Proof: Let r −1 = i∈T yiAi. Then we can reorder the columns of A so that the
first k ' columns correspond to the k ' nonzero entries of y, in decreasing order of
magnitude:

|y1| ≥ |y2| ≥ · · · ≥ |yk ' | > 0, |yk ' +1| = 0, |yk ' +2| = 0, . . . , |ym| = 0.
corresponds to first k ' columns of A

where k ' ≤ k. Hence supp(y) = {1, 2, . . . , k ' } ⊆ T . Then to ensure that we pick
j ∈ T , a sufficient condition is that

−1 −1(4.1) |� A1, r �| > |� Ai, r �| for all i ≥ k ' + 1.

We can lower-bound the left-hand side of (4.1):

k ' k ' r r
|� r −1, A1 �| = y A , A1 ≥ |y1|− |y ||� A , A1 �| ≥ |y1|−|y1|(k ' −1)µ ≥ |y1|(1−k ' µ+µ),

=1 =2

which, under the assumption that k ' ≤ k < 1/(2µ), is strictly lower-bounded by
|y1|(1/2 + µ).

We can then upper-bound the right-hand side of (4.1):

k ' k ' r r
|� r −1, Ai �| = y A , Ai ≤ |y1| |� A , Ai �| ≤ |y1|k ' µ,

=1 =1

which, under the assumption that k ' ≤ k < 1/(2µ), is strictly upper-bounded by
|y1|/2. Since |y1|(1/2+ µ) > |y1|/2, we conclude that condition (4.1) holds, guaran­
teeing that the algorithm selects j ∈ T and this completes the proof of the lemma.
•

Now we can prove the main lemma:

Proof: Suppose that S ⊆ T at the start of a stage. Then the residual r −1 is
supported in T because we can write it as r

r −1 = b − ziAi, where z = arg min Ib − AS zS I2
i∈S

`

`
∑

` `

`
` `

`

` `
′

`

`

` `

∣
`

` i

`

`

∣ ∣

∣ ∣

∣
`

∣

∣ ∣

∣∣ ∣∣

∣∣ ∣∣

∣∣ ∣∣

∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ ∣∣∣∣

∣∣∣∣ ∣∣∣∣

61 4.4. PRONY’S METHOD

Applying the above lemma, we conclude that the algorithm selects j ∈ T . •

This establishes property (a) inductively, and completes the proof of correctness
for orthogonal matching pursuit. Note that this algorithm works up to exactly the
threshold where we established uniqueness. However in the case where A = [U, V]
and U and V are orthogonal, we proved a uniqueness result that is better by a factor
of two. There is no known algorithm that matches the best known uniqueness bound
there, although there are better algorithms than the one above (see e.g. [55]).

Matching Pursuit

We note that matching pursuit differs from orthogonal matching pursuit in a crucial
way: In the latter, we recompute the coefficients xi for i ∈ S at the end of each
stage because we project b perpendicular to U . However we could hope that these
coefficients do not need to be adjusted much when we add a new index j to S.
Indeed, matching pursuit does not recompute these coefficients and hence is faster
in practice, however the analysis is more involved because we need to keep track of
how the error accumulates.

4.4 Prony’s Method

The main result in this section is that any k-sparse signal can be recovered from
just the first 2k values of its discrete Fourier transform, which has the added benefit
that we can compute Ax quickly using the FFT. This is algorithm is called Prony’s
method, and dates back to 1795. This is optimal optimal relationship between the
number of rows in A and the bound on the sparsity of x; however this method is
very unstable since it involves inverting a Vandermonde matrix.

Properties of the DFT

In Prony’s method, we will make crucial use of some of the properties of the DFT.
Recall that DFT matrix has entries:

We can write ω = ei2π/n, and then the first row is √ [1, 1, . . . , 1]; the second row is

Fa,b =
1 √
n

exp
i2π(a − 1)(b − 1)

n
1
n

√1
n [1, ω, ω

2 , . . .], etc.

We will make use of following basic properties of F :

() ()

�

62 CHAPTER 4. SPARSE RECOVERY

(a) F is orthonormal: F H F = FF H , where F H is the Hermitian transpose of F

(b) F diagonalizes the convolution operator

In particular, we will define the convolution operation through its corresponding
linear transformation:

Definition 4.4.1 (Circulant matrix) For a vector c = [c1, c2, . . . , cn], let ⎤⎡

M c =
⎢⎢⎢⎣

cn cn−1 cn−2 . . . c1
c1 cn cn−1 . . . c2
.

cn−1 cn

⎥⎥⎥⎦
.

Then we can define M cx as the result of convolving c and x, denoted by c ∗ x. It is
easy to check that this coincides with the standard definition of convolution.

In fact, we can diagonalize M c using F . We will use the following fact, without
proof:

Claim 4.4.2 M c = F H diag(Ac)F , where Ac = Fc.

Hence we can think about convolution as coordinate-wise multiplication in the
Fourier representation:

Corollary 4.4.3 Let z = c ∗ x; then zA = Ac 8 xA, where 8 indicates coordinate-wise
multiplication.

Proof: We can write z = M cx = F H diag(Ac)Fx = F H diag(Ac)xA = F H (Ac 8 xA), and
this completes the proof. •

We introduce the following helper polynomial, in order to describe Prony’s method:

Definition 4.4.4 (Helper polynomial)

p(z) = ω−b(ωb − z)
b∈supp(x)

= 1 + λ1z + . . . + λkz k .

Claim 4.4.5 If we know p(z), we can find supp(x).

∏

63 4.4. PRONY’S METHOD

Proof: In fact, an index b is in the support of x if and only if p(ωb) = 0. So we can
evaluate p at powers of ω, and the exponents where p evaluates to a non-zero are
exactly the support of x. •

The basic idea of Prony’s method is to use the first 2k values of the discrete Fourier
transform to find p, and hence the support of x. We can then solve a linear system
to actually find the values of x.

Finding the Helper Polynomial

Our first goal is to find the Helper polynomial. Let

v = [1, λ1, λ2, . . . , λk, 0, . . . , 0], and Av = Fv

It is easy to see that the value of Av at index b + 1 is exactly p(ωb).

Claim 4.4.6 supp(Av) = supp(x)

That is, the zeros of vA correspond roots of p, and hence non-zeros of x. Conversely,
the non-zeros of vA correspond to zeros of x. We conclude that x 8 vA= 0, and so:

xCorollary 4.4.7 M xv = 0

Proof: We can apply Claim 4.4.2 to rewrite x 8 vA = 0 as xA ∗ v = A0 = 0, and this
implies the corollary. •

Let us write out this linear system explicitly: ⎤ AAAA⎡
xn xn−1 xn−k x1. ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
AA

AA
A

A

A
x1 xn xn−k+1 x2
.

xk+1 xk x1 xk+2

. ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xM x =
. AAAAx2k x2k−1 xk x2k+1
.

.

Recall, we do not have access to all of the entries of this matrix since we are only
given the first 2k values of the DFT of x. However consider the k × k + 1 submatrix

� �

64 CHAPTER 4. SPARSE RECOVERY

whose top left value is xAk+1 and whose bottom right value is xAk. This matrix only
involves the values that we do know!

Consider

xk+1
⎤ A⎡⎤⎡

xk−1 x1
⎤ AA⎡ λ1 xk

.
A ⎢⎢⎢⎣

⎥⎥⎥⎦
= −

⎢⎢⎢⎣

⎥⎥⎥⎦

.
. .

λ2
. . .

⎢⎣ ⎥⎦ . .
. Ax2k−1 x2k−1 xk
x2k

It turns out that this linear system is full rank, so λ is the unique solution to the
linear system (the proof is left to the reader1). The entries in λ are the coefficients
of p, so once we have solved for λ we can evaluate the helper polynomial on ωb to
find the support of x. All that remains is to find the values of x. Indeed, let M be
the restriction of F to the columns in S and its first 2k rows. M is a Vandermonde

A

matrix, so again MxS = xA1,2,...2k has a unique solution, and we can solve this linear
system to find the non-zero values of x.

A

4.5 Compressed Sensing

A

Here we will give stable algorithms for recovering a signal that has an almost linear x
(in the number of rows of the sensing matrix) number of non-zeros. Recall that the
Kruskal rank of the columns of A is what determines how many non-zeros we can
allow in x and yet have x be the uniquely sparsest solution to Ax = b. A random
matrix has large Kruskal rank, and what we will need for compressed sensing is a
robust analogue of Kruskal rank:

Definition 4.5.1 A matrix A is RIP with constant δk if for all k-sparse vectors x
we have:

(1 − δk)IxI2 ≤ IAxI2 ≤ (1 + δk)IxI2
2 2 2

If A is a random m×n matrix where each entry is an independent Gaussian (N(0, 1))
then we can choose m ≈ k log n/k and δk = 1/3. Next we formalize the goals of
sparse recovery:

Definition 4.5.2 σk(x) = min Ix − wI1w s.t. w 0≤k

i.e. σk(x) is the f1 sum of all but the k largest entries of x. In particular, if IxI0 ≤ k
then σk(x) = 0.

. . .
λk

‖ ‖

65 4.5. COMPRESSED SENSING

Our goal is to find a w where Ix − wI1 ≤ Cσk(x) from a few (Õ(k)) measure­
ments. Note that we will note require that w is k sparse. However if x is exactly
k sparse, then any w satisfying the above condition must be exactly equal to x
and hence this new recovery goal subsumes our exact recovery goals from previous
lectures (and is indeed much stronger).

The natural (but intractable) approach is:

(P 0) min IwI0 s.t. Aw = b

Since this is computationally hard to solve (for all A) we will work with the f1
relaxation:

(P 1) min IwI1 s.t. Aw = b

and we will prove conditions under which the solution w to this optimization problem
satisfies w = x (or Ix − wI1 ≤ Cσk(x)).

Theorem 4.5.3 [35] If δ2k + δ3k < 1 then if IxI0 ≤ k we have w = x.

Theorem 4.5.4 [34] If δ3k + 3δ4k < 2 then

C Ix − wI2 ≤ √ σk(x)
k

Note that this bounds the f2 norm of the error x − w in terms of the f1 error of the
best approximation.

Theorem 4.5.5 [40] If δ2k < 1/3 then

2 + 2δ2kIx − wI1 ≤ σk(x)
1 − 3δ2k

We will follow the proof of [80] that greatly stream-lined the types of analysis
and made the connection between compressed sensing and almost Euclidean subsec­
tions explicit. From this viewpoint it will be much easier to draw an analogy with
error correcting codes.

Almost Euclidean Subsections

Set Γ = ker(A). We will make use of certain geometric properties of Γ (that hold
almost surely) in order to prove that basis pursuit works:

66 CHAPTER 4. SPARSE RECOVERY

Definition 4.5.6 Γ ⊆ Rn is an almost Euclidean subsection if for all v ∈ Γ,

1 C √ IvI1 ≤ IvI2 ≤ √ IvI1
n n

Note that the inequality √1
n IvI1 ≤ IvI2 holds for all vectors, hence the second

inequality is the important part. What we are requiring is that the f1 and f2 norms
are almost equivalent after rescaling.

Question 8 If a vector v has IvI0 = o(n) then can v be in Γ?

√
No! Any such vector v would have IvI1 = o(n)IvI2 using Cauchy-Schwartz.

Let us think about these subsections geometrically. Consider the unit ball for
the f1 norm:

B1 = {v|IvI1 ≤ 1}

This is called the cross polytope and is the convex hull of the vectors {±ei}i where
ei are the standard basis vectors. Then Γ is a subspace which when intersected with
B1 results in a convex body that is close to the sphere B2 after rescaling.

In fact it has been known since the work of [63] that choosing Γ uniformly at
random with dim(Γ) ≥ n − m we can choose C = O(log n/m) almost surely (in
which case it is the kernel of an m × n matrix A, which will be our sensing matrix).
In the remainder of the lecture, we will establish various geometric properties of Γ
that will set the stage for compressed sensing.

Properties of Γ

Throughout this section, let S = n/C2 .

Claim 4.5.7 Let v ∈ Γ, then either v = 0 or |supp(v)| ≥ S.

Proof: r C IvI1 =
j∈supp(v)

|vj | ≤ |supp(v)| · IvI2 ≤ |supp(v)|√
n
IvI1

where the last inequality uses the property that Γ is almost Euclidean. The last
inequality implies the claim. •

√

√ √

67 4.5. COMPRESSED SENSING

Now we can draw an analogy with error correcting codes. Recall that here we want
C ⊆ {0, 1}n . And the rate R is R = log |C|/n and the relative distance δ is

minx=# y∈C dH (x, y)
δ =

n

where dH is the Hamming distance. The goal is to find a code where R, δ = Ω(1)
and that are easy to encode and decode. In the special case of linear codes, e.g.
C = {y|y = Ax} where A is an n × Rn {0, 1}-valued matrix and x ∈ {0, 1}Rn . Then

minx#=0∈C IxI0
δ =

n

So for error correcting codes we want to find large (linear) dimensional subspaces
where each vector has a linear number of non-zeros. In compressed sensing we want
Γ to have this property too, but moreover we want that its f1 norm is also equally
spread out (e.g. most of the non-zero coordinates are large).

Definition 4.5.8 For Λ ⊆ [n], let vΛ denote the restriction of v to coordinates in
¯Λ. Similarly let vΛ denote the restriction of v to Λ.

Claim 4.5.9 Suppose v ∈ Γ and Λ ⊆ [n] and |Λ| < S/16. Then

IvI1IvΛI1 <
4

Proof:
C IvΛI1 ≤ |Λ|IvΛI2 ≤ |Λ|√
n
IvI1

•

Hence not only do vectors in Γ have a linear number of non-zeros, but in fact their
f1 norm is spread out. Now we are ready to prove that (P 1) exactly recovers x when
IxI0 is sufficiently small (but nearly linear). Next lecture we will prove that it is
also stable (using the properties we have established for Γ above).

Lemma 4.5.10 Let w = x + v and v ∈ Γ where IxI0 ≤ S/16. Then IwI1 > IxI1.

Proof: Set Λ = supp(x).

IwI1 = I(x + v)ΛI1 + I(x + v)ΛI1 = I(x + v)ΛI1 + Iv ΛI1

6

6

√ √

68 CHAPTER 4. SPARSE RECOVERY

Now we can invoke triangle inequality:

IwI1 ≥ IxΛI1 − IvΛI1 + Iv ΛI1 = IxI1 − IvΛI1 + Iv ΛI1 = xΛI1 − 2IvΛI1 + IvI1

However IvI1 − 2IvΛI1 ≥ IvI1/2 > 0 using the above claim. This implies the
lemma. •

Hence we can use almost Euclidean subsections to get exact sparse recovery up to

n IxI0 = S/16 = Ω(n/C2) = Ω
log n/m

Next we will consider stable recovery. Our main theorem is:

Theorem 4.5.11 Let Γ = ker(A) be an almost Euclidean subspace with parameter
C. Let S =

C
n
2 . If Ax = Aw = b and IwI1 ≤ IxI1 we have

Ix − wI1 ≤ 4 σ S (x) .
16

Proof: Let Λ ⊆ [n] be the set of S/16 coordinates maximizing IxΛI1. We want
to upper bound Ix − wI1. By the repeated application of the triangle inequality,
IwI1 = IwΛI1 + IwΛI1 ≤ IxI1 and the definition of σt(·), it follows that

Ix − wI1 = I(x − w)ΛI1 + I(x − w)ΛI1

≤ I(x − w)ΛI1 + Ix ΛI1 + Iw ΛI1

≤ I(x − w)ΛI1 + Ix ΛI1 + IxI1 − IwΛI1

≤ 2I(x − w)ΛI1 + 2Ix ΛI1

≤ 2I(x − w)ΛI1 + 2 σ S (x) .
16

Since (x − w) ∈ Γ, we can apply Claim 4.5.9 to conclude that I(x − w)ΛI1 ≤
1
4 Ix − wI1. Hence

1 Ix − wI1 ≤ Ix − wI1 + 2σ S (x) .
2 16

This completes the proof. •

Notice that in the above argument, it was the geometric properties of Γ which
played the main role. There are a number of proofs that basis pursuit works, but the
advantage of the one we presented here is that it clarifies the connection between
the classical theory of error correction over the finite fields, and the sparse recovery.
The matrix A here plays the role parity check matrix of error correcting code, and

()

69 4.5. COMPRESSED SENSING

hence its kernel corresponds to the codewords. There is more subtlety in the real
case though: as opposed to the finite field setting where the Hamming distance is
essentially the only reasonable way of measuring the magnitude of errors, in the
real case there is an interplay among many different norms, giving rise to some
phenomenon not present in the finite field case.

In fact, one of the central open question of the field is to give a deterministic
construction of RIP matrices:

Question 9 (Open) Is there an explicit construction of RIP matrices, or equiva­
lently an almost Euclidean subsection Γ?

In contrast, there are many explicit constructions of asymptotically good codes. The
best known deterministic construction is due to Guruswami, Lee and Razborov:

Theorem 4.5.12 [69] There is a polynomial time deterministic algorithm for con­
structing an almost Euclidean subspace Γ with parameter C ∼ (log n)log log log n

We note that it is easy to achieve weaker guarantees, such as ∀0 = v ∈ Γ, supp(v) =
Ω(n), but these do not suffice for compressed sensing since we also require that the
f1 weight is spread out too.

6=

MIT OpenCourseWare
http://ocw.mit.edu

18.409 Algorithmic Aspects of Machine Learning
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/

