
18.413: Error-Correcting Codes Lab	 April 15, 2004


Lecture 17 
Lecturer: Daniel A. Spielman 

17.1 Developments in iterative decoding 

My main purpose in this lecture is to tell you some of the more interesting developments in the 
field of iterative decoding. Unfortunately, a lot has happened, so there is much that I will have to 
leave out. I hope that some of you will make up for this with your final projects. 

17.2 Achieving Capacity on the BEC 

You will recall that the capacity of the binary erasure channel (BEC) with erasure probability p 
is 1 − p. It was proved [LMSS01] that LDPC codes can achieve the capacity of these channels. In 
particular, for any � > 0, there exists an infinite family of LDPC codes that have arbitrarily low 
error probability on the BEC with erasure probability 1 − p − �. To explain how these codes are 
constructed, I will recall some material from Lecture 13. 

In that lecture, we observed for the (3,6)-regular constructions, 

•	 If the probability that each incomming message to a parity node is ? is a, then the probability 
that an outgoing message is ? is (1 − (1 − a)5). 

•	 If the initial erasure probability was p0 and the probability that each incomming message to 
an “=” (bit) node is ? is b, then the probability that a message leaving such a node is ? is 
p0b

2 . 

To produce better codes, we will use carefully specified irregular constructions. In particular, we 
will speciry the fraction of nodes of each type of each degree. While it might seem strange, we will 
do this from the perspective of edges. For example, the fractions for the bit nodes will be specified 
by a sequence 

�1, �2, �3, . . . , �dl , 

where dl is the maximum degree of a bit node. The number �i specified the fraction of edges that 
are connected to bit nodes of degree i. We will also specify a sequence �1, . . . , �dr , where �i is the 
fraction of edges that are connected to parity nodes of degree i. The parameters must satisfy 

� 
�i = 1 and 

� 
�i = 1, 

17-1 



17-2 Lecture 17: April 15, 2004 

and a condition ensuring that the number of edges specified by both sequences is the same. The 
reason that we specify the fractions in this form is that we obtain the equations: 

at+1 = p0

� 

i 

�ib
i−1 
t , 

bt =
� 

i 

�i(1 − (1 − at)
i−i . 

Thus, in order for the decoding to converge with high probability as the code grows large, we only 
need that the plot of �(x) lies above �(y), where 

�(x) =

� 

i 

�i(1 − (1 − x)i−i , 

�(y) = p0

� 

i 

�iy i−1 .


Thus, the problem of designing erasure-correcting codes is reduced to the problem of finding the 
right polynomials. For example, here are two degree sequences that I checked work at p = .048 

�2 = .2594, �3 = .37910, �11 = .127423, �12 = .237538, �7 = 1. 

Here are the two curves that we get for these polynomials at p = .48. 

p0 = .48 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

ch
ec

k 
st

ag
e 

er
as

e 
pr

ob
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
msg stage erase prob 

Figure 17.1: Very close curves, using the above degree sequences 

Compare this with the curves for the standard �3 = 1, �6 = 1: 

One of the big questions in the area of iterative decoding is whether one can approach the capacities 
of channels such as the Gaussian and BSC. We now know that it is possible to come very close, 
but we don’t know if one can come closer than every �. 



17-3 Lecture 17: April 15, 2004


p0 = .42 
1 

0.9 

0.8 

0.7 

0.6

ch
ec

k 
st

ag
e 

er
as

e 
pr

ob
0.5 

0.4 

0.3 

0.2 

0.1 

0 
0	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

msg stage erase prob 

Figure 17.2: The curves for the standard (3,6)-graph 

17.3 Encoding 

One problem with LDPC codes is that it is not clear how to encode them efficiently. Clearly, the 
method that we used in Project 1 is unacceptable. However, for good families of irregular codes 
there is a fast encoder: we can essentially use the erasure correction algorithm to encode. That is, 
we set all the message bits, do a little bit more computation to find the values of a few other bits, 
and then treat the problem of encoding the rest as an erasure correction problem. Fortunately, 
this problem is even easier than that of erasure correction, because here we can choose the set of 
erasures that is easiest to correct, rather than the set output by the channel. The details of this 
were worked out by Richardson and Urbanke [RU01b]. 

I should also point out that Jin, Khandekar and McEliece showed how to construct irregular repeat-
accumulate codes that also achieve capacity of the BEC, and that these can be encoded in linear 
time. 

17.4 Density Evolution 

One of the most important developments that we have dodged in this class is Density Evolu­
tion [RU01a]. Density Evolution extends the techniques used to analyze the behavior of LDPC on 
the BEC to more general channels. It is particularly effective on the Gaussian channel. The idea is 
to compute the distributions of messages being sent at each iteration. The difficulty is that these 
distributions might not have nice descriptions. 

The Density Evolution approach is to represent a sketch of the density functions of these distribu­
tions. Richardson and Urbanke realized that for the particular operations that take place at bit and 



Lecture 17: April 15, 2004 17-4 

parity nodes in belief propagation decoding, it is possible to compute the sketches of the density 
functions with high accuracy. This allows one to use computer computations to rigorously analyze 
how the algorithm will behave. This approach had a big impact, and inspired the less-rigorous but 
more easily applicable EXIT chart approach. 

17.5 Exit Charts, revisited 

I would now like to examine how EXIT charts are constructed for serially concatenated codes. To 
begin, let me recall the structure of the decoder: 

−1Π 

Π 
initialize to null 
at first round 

from channel 

fixed at null output 

not used 
inner 
extrinsic 
decoder 

outer 
extrinsic 
decoder 

Figure 17.3: The description of the serially-concatenated code decoder by Benedetto, et. al. 

As the roles of the inner and outer codes are different, their exit charts will be constructed differently. 
As the outer code decoder does not receive any inputs from the channel, its construction is easier. 
The outer decoder has just one input containing estimates for each coded bit. That is, its input 
looks like what one gets by passing the coded bits through a channel. So, we construct the EXIT 
charts by passing the coded bits through a channel, and plotting a point with X-coordinate the 
input channel capacity and Y-coordinate the observed capacity of the meta-channel (i.e. at the 
output of the decoder). 

The exit charts for the inner decoder are slightly more complicated because these decoders have 
two inputs: one from the outer decoder and one from the channel. To form these charts, we will 
fix the channel. That is, we will get a different curve for each channel. We then pass two inputs 
to the decoder: the result of passing the coded bits through the actually channel, and the result of 
passing the message bits through a channel whose capacity we vary. As the capacity of this channel 
varies, we trace out a curve by measuring the observed capacity of the meta-channel. 

17.6 Why we use bad codes to make good codes 

Many have been mystified by why iterative coding schemes mainly combine codes that are viewed 
as “bad”. That is, they use parity-check codes, or very simple convolutional codes. If one attempts 
to replace these with more powerful codes, the resulting iterative scheme is almost always worse. 



17-5 Lecture 17: April 15, 2004 

For example, if one uses more powerful codes instead of parity checks in LDPC codes or if one uses 
complicated convolutional codes in Turbo codes, they almost never work well. The reason for this 
can been seen in EXIT charts. Ten Brink observed that the areas under the curves in the EXIT 
charts are almost always the same, and just seem to depend upon the rate of the code. In fact, for 
codes over the erasure channel, this was proved by Ashikhmin, Kramer and ten Brink: the area 
under an outer-code EXIT chart curve equals 1 minus the rate of the code (IEEE Transactions on 
Information Theory, to appear 2004). They prove a similar result for the inner codes: the area 
under the curve equals the capacity of the actual channel divided by the rate of the code. 

Applying these results for the BEC, or their conjectured analogs for other channels, we find that a 
classically good code would have an unfortunately shaped EXIT chart: it would looks like a step 
function. The reason is that these codes will do well for any noise level less than the rate of the 
code, and that doing well in this region would require all the area of the curve. This will create 
trouble because the place where we would enter the curve would be on the wrong side of the step. 

References 

[LMSS01] Luby, Mitzenmacher, Shokrollahi, and Spielman. Efficient erasure correcting codes. 
IEEETIT: IEEE Transactions on Information Theory, 47, 2001. 

[RU01a]	 Richardson and Urbanke. The capacity of low-density parity-check codes under message-
passing decoding. IEEETIT: IEEE Transactions on Information Theory, 47, 2001. 

[RU01b]	 Richardson and Urbanke. Efficient encoding of low-density parity-check codes. 
IEEETIT: IEEE Transactions on Information Theory, 47, 2001. 


