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18.413: Error­Correcting Codes Lab February 19, 2004 

Lecture 5 

Lecturer: Daniel A. Spielman 

5.1 Parity Continued 

5.2 The Gaussian Distribution 

One of the most natural distribution is the Gaussian distribution. A Gaussian random variable 
with mean µ and standard deviation σ has probability density function 

1 −(x−µ)2 

p(x) = e 2σ2 .√
2πσ 

For those who haven’t learned about probability density functions before, this means that the 
probability that x lies between x0 and x1 is 

x1 

p(x) dx. 
x=x0 

You can verify that 
∞ 

p(x) dx = 1. 
x=−∞ 

The standard deviation tells you how far from the mean x is likely to lie. In particular, one can 
prove that 

e− −k2 

2 

P [x − µ > kσ] < ,√
2πk 

and that this bound is very close to tight for k ≥ 2. For σ = 1 and µ = 0, this bound indicates 
that the probability that the Gaussian lies between −2 and 2 is at least 0.946, whereas the actual 
probability is about 0.956. 

If g is a Gaussian random variable of mean 0 and standard deviation 1, then σg + µ is a Gaussian 
random variable of mean µ and standard deviation σ. Often, you will see a Gaussian described by 
its variance. It’s variance is the square of its standard deviation. 

Gaussian random variables arise as the limit of binomial random variables. That is, if we let x1, 
. . . , xn be indepent random variables uniformly distributed in {1, −1}, and let X = xi/

√
n, then 

as n grows large, X approaches the Gaussian distribution. We will now sketch a proof of this. 

In particular, we consider the probability that X = c
√

n. From counting, we can determine that 
this is � � � n

P X = c
√

n 
� 

= 2−n 

n/2− c
√

n/2 
. 
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We will show that this is approximately equal to 

2−c 
� c+1/

√
n 

p(g) dg ≈ 2p(c)/
√

n = 

� 
2 

e 2 . 
πn g=c−1/

√
n 

Applying Stirling’s formula, we find that 

n n!
2−n = 2−n 

n/2− k (n/2− k)!(n/2 + k)!⎛ ⎞ 
n n ⎜ e 

√
2πn 

� 

�n/2+k ⎠ �≈ 2−n ⎝� 
n/2−k 

�n/2−k � 
n/2+k 

⎟ 
2π(n/2− k) 2π(n/2 + k) 

e e 

(n)n 
√

2πn 
� 

(n − 2k)n/2−k (n + 2k)n/2+k 2π(n/2− k) 2π(n/2 + k) � �� �� 
(n)n−2k (n)2k 

√
2πn 

� 

(n2 − 4k2)n/2−k (n + 2k)2k 2π(n/2− k) 2π(n/2 + k) 

We now evaluate each of the three terms in this product individually, substituting in k = (c/2)
√

n. 
First, we find 

(n)n−2k (n)n−c
√

n 

= 
− 4k2)n/2−k − c2n)n/2−(c/2)

√
n2 (n2(n � 

1 
�n/2−(c/2)

√
n 

= 
(1 − c2/n) � �n/2−(c/2)

√
n2c≈ 1 + 

n 

≈ e c
2/2 , 

as (1 + 1/k)k ≈ e. To evalue the other term, we compute 

(n)2k (n)c
√

n 

= 
(n + 2k)2k (n + c

√
n)c

√
n � �c
√

n1 
= 

1 + c/
√

n � �c√n ≈ 1− c/
√

n 
2 ≈ e−c , 

as (1 − 1/k)k ≈ e−1. Finally, we find 
√

2πn 
� 

2 
2π(n/2− k) 2π(n/2 + k) 

≈ 
πn 
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for k << n. 

Taking the product of all three terms, we get 

c2/2 e−c2 2 2 
e−c2/2 e = ,

πn πn 

as desired. 

5.3 The Gaussian and Erasure Channels 

In this lecture, we introduce two new channels: the Erasure Channel and the Gaussian Channel. 
The Erasure Channel correpsonds to data loss, and can be used to model packet loss. On the other 
extreme, the Gaussian Channel corresponds to white Gaussian noise, and is closer to the analog 
world. 

The Erasure Channel with erasure probability p maps 

0 → 0 with probability 1− p 
0 ? with probability p→
1 ? with probability p→
0 → 1 with probability 1− p 

That is, it erases each bit with probability p. 

The Gaussian Channel is described in continuous terms. The channel can be specified by the 
standard deviation of the Gaussian random noise, σ. The input alphabet to the channel is R, but 
we will restrict ourselves to the symbols 1 and −1. The output alphabet is R. To obtain the output 
y from the input x, the Gaussian Channel chooses a Gaussian random variable with mean 0 and 
standard deviation σ, r, and outputs y = x+r. Note that you can obtain such a variable in Matlab 
from sigma * randn (1). Under “Programming Tips” on the course web page, you can find out 
how to generate these in C and Java. 

Of course, we need to figure out what the channel output y means. A naive approach is to say that 
if y > 0 then x was most likely 1, and if y < 0, then x was most likely −1. But, we want to be 
more precise. Our main formula tells us that 

Pext [x = 1|y = b] = 
P [y = b|x = 1] 

P [y = b|x = 1] + P [y = b x = 1] .|

However, we may not apply this formula directly because P [y = b|x = 1] = 0! We get the correct 
answer if we use the density functions instead of probabilities. That is, we replace P [y = b|x = 1] 
with p(b− 1) and P [y = b x = −1] with p(b + 1) to obtain. |

e−(b−1)2/2σ2 
p(b− 1) 

=Pext [x = 1|y = b] = 
p(b− 1) + p(b + 1) e−(b−1)2/2σ2 + e−(b+1)2/2σ2 . 

For example, if σ = 1 and b = 1, we get 

1 
= 0.88.

1 + e−2 
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This is how we interpret the output of the Gaussian Channel. 

To quickly compare these channels, we note that the capacity of the BECp is 1 − p, which is 
exactly what you would get if you asked for a retransmit of every lost message. The capacity of 
the Gaussian channel with standard deviation σ is 

1 1 
2 

log2 1 + . 
σ2 

Warning: I’ve lied here a little bit: this is actually the capacity if we are allowed to use arbitrary 
input alphabets, subject to an average power constraint. The capacity is a little bit lower if we 
restrict ourselves to {−1, 1} inputs. There is no nice closed form for the capacity when we restict 
to {−1, 1} inputs, but you could compute it empiracally using the techniques from Small Project 
1. 

For comparison with the BSC, we note that we obtain capacity 1/2 when σ = 1. If we were to 
naively round the input—treating it as 1 if y > 0 and −1 otherwise—we would obtain a BSC.1587. 
However, the capacity of the BSC.16 is .366. To get capacity 1/2, we need the BSC.1101. So, you 
loose a lot if you throw out the extra information provided by the channel. 

Note that the Gaussian Channel on {1,−1} inputs is a symmetric channel. That means that we 
can view it as a probability distribution over BSC channels, with a crossover probability p ≤ 1/2 
occuring with density 

e−(p−1)2/2σ2 
+ e−(p+1)2/2σ2 

. 

This means that you all know a way to experimentally compute the capacity of this channel. 

When describing codes, we have usually used the bits {0, 1}, whereas I’m using 1 and −1 over the 
Gaussian Channel. The standard translation is to identify binary 0 with Real 1 and binary 1 with 
Real −1. 

5.4 The Parity Product Code 

In Small Project 2, we will consider the following code. It will have 4 input bits, w1, w2, w3, w4. 
The first 4 bits of the codeword x1, . . . , x4 will be set to these. The remaining bits will be set by 
the following rules: 

x5 = x1 ⊕ x2 

x6 = x3 ⊕ x4 

x7 = x1 ⊕ x3 

x8 = x2 ⊕ x4 

x9 = x7 ⊕ x8 

We note that all these relations also imply 

x9 = x5 ⊕ x6. 
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We usually understand this code by writing the bits in a matrix, like this 

x1 x2 x5 

x3 x4 x6 

x7 x8 x9, 

and observing that each row and column must have parity 0. This is why we call it a product code: 
each row and each column looks like a code (we’ll see more of these later). 

If we flip one bit in a codeword of this code, then the parity constraints on the row and colum 
containing the flipped bit will be violated, indicating where the error is. If two bits are flipped, 
you might be able to detect that an error has occured, but won’t be able to figure out where it is. 
That is, if you only have bits and not and confidence information. 

If in addition to bit you have information for each bit indicating how confident you are that the bit 
is 0 or 1 (that is, if you have the full information provided by the channel), then you can decode 
in one of the ways discussed in the last lecture: either maximum likelihood decoding to minimize 
word error or bit error. In Small Project 2, we will minimize the bit error rate, denoted (BER). 

5.5 BER 

I’ll now define the bit error rate (BER) precisely. It depends upon the coding scheme, the channel, 
and the decoding scheme. Let w1, . . . , wk be the bits in the message to be sent. We assume that 
they are encoded as x1, . . . , xn, and received by the decoder as y1, . . . , yn. We then let z1, . . . , zk 

be the outputs of the decoder, which we now force to output a 0 or 1 for each bit. The bit error 
rate is then � � 

E (1/k) P [wi =� zi] . 
i 

Empircally, you can compute this by averaging 

(1/k) [wi =� zi] 
i 

over many trials. 

5.6 Heuristic Decoding of the Parity Product Code 

I will now describe a heuristic decoding algorithm for the code we will examine on Small Project 2. 
This algorithm will be less accurate and take longer to run than the ideal algorithm. However, for 
larger codes the natural extension of this algorithm will be practical and the ideal algorithm will 
be impractical. For now, I will assume that we are just trying to compute x1. 

Here is the algorithm: 

• compute Pext [x3 = 1|y4, y6]. 
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•	 from the previous calculation, obtain q3 = Ppost [x3 = 1|y3, y4, y6]. 

•	 similarly, compute q7 = Ppost [x7 = 1|y7, y8, y9]. 

•	 Now, we will to compute Pext [x1 = 1|y3, y4, y6, y7, y8, y9]. We do this by observing that x1 = 
x3 ⊕ x7, and use the parity formula to obtain the extrinsic probability that x1 = 1 given our 
estimates of the probabiliites that x3 and x7 equal 1 obtained above, q3 and q7. 

•	 We then compute Pext [x1 = 1|y2, y4, y8, y5, y6, y9], working by columns instead of rows. 

We then treat • 
Pext [x1 = 1|y3, y4, y6, y7, y8, y9] , 

Pext [x1 = 1|y2, y4, y8, y5, y6, y9] , 

and

Pext [x1 = 1|y1]


as three independent estimators of x1, and combine these estimations as discussed for the 
repition code. 

This is a heuristic algorithm as the three estimators are not actually independent. 

5.7 Confidence Intervals 

Whenever we plot data, we should provide confidence intervals on the data in the plot. The goal of 
a confidence interval is to indicate the range of values that could reasonbly explain your output. It 
is standard to give a 95% confidence interval. That is, a range such that with probability 95% the 
actual value lies within the confidence interval. For this project, we will just be dealing with binary 
variables—either “yes” or “no”, and estimating the probability of a “yes”. In this case, obtaining 
confidence intervals is reasonably simple. Let’s assume that we do n experiments and r of them 
come out “yes”. Then, we estimate the probability of “yes” to be ˆ = r/n. For reasonably large n,p

p)/ˆpe−2
√

(1− ̂ pn toand not unreasonably small or large p, if we draw the confidence interval from ˆ

2
√

(1−p̂)/ˆˆ
pe pn, then with probability 95% the actual p should lie in this interval. If you have r = 0,

then we set the bottom of the interval to 0 and the top to 1− e(−2/n).


However, I should warn you that, while this is a very well accepted way of drawing the confidence 
intervals, it does not always get you 95% confidence. But, it takes strange values to get much below 
90%. Yes, I am fudging here. I can give you papers on this topic if you would like to learn more. 

For this class, I will be happy if you draw your confidence intervals using this rule. 

You should expect your data to fluctuate quite a bit within the inner half of the confidence interval. 
As pne±2

√
(1−p)/pn ≈ pn ± 2 p(1 − p)n, this means that you should only expect to get relative 

accuracy around p(1 − p)n/pn ≈ 1/
√

pn. For example, if p ≈ 1/100 and you run n = 100, 000, 000 
experiments, you should only expect to get about 3 digits of accuracy. 
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5.8 How big should N be? 

Let’s say that we are trying to estimate the BER, but the BER is quite small. You might want to 
know how many trials you need to run to estimate the BER reasonably. 

Rather than fixing in advance how many trials you will run, you can run until you see some fixed 
number of errors. For crude data, just to get general order of magnitude, 10 observations would be 
reasonable. If you want to get a digit of accuracy, then you need 100 observations. The formula 
given in the previous section will give you a resonable confidence interval. 

5.9 Plotting in Matlab 

To make many plots appear on the same set of axes, type hold on after you plot. 

Here is an example of how to plot a confidence interval on some imaginary data. In this case, 
I’ve made the confidence interval go from y (i) ­ sig to y (i) + sig, just to show you how the 
graphics should look. 

x = [1:10];

y = x.^(1.5);

plot(x,y)

hold on

plot(x,y,’o’)

i = 4;

sig = 3;

plot([x(i),x(i)],[y(i)­sig,y(i)+sig],’+’)



