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Abstract 
 

 Error correcting codes prevent loss of integrity in data transmission.  Low Density 

Parity Check codes are a family of codes that are specified by sparse matrices.  Using the 

Nelder-Mead Downhill Simplex Evolution to design an irregular Low Density Parity 

Check code, we hope to improve upon the accuracy of decoding. 

 

 

Introduction 
 

 Loss of data integrity during transmission has always been a problem, since there 

is no way of guaranteeing accuracy in the bits received.  Error correcting codes are a 

family of methods that correct this problem.  In an error-correcting paradigm, extra bits 

are sent along with the message.  These extra bits are carefully calculated using various 

methods.  On the receiving end of the transmission, there must be a decoding algorithm 

to analyze all the bits that were received and try to deduce the bits that were sent.  In this 

project, we will look at a specific type of code – the Low Density Parity Check (LDPC) 

code.  We will try to use the Nelder-Mead optimization method to determine an optimal 

LDPC code, and thereby improve upon the number of errors that can be corrected using 

normal LDPC’s. 

 

 

Channels 
 

 Channels are a representation of a path that bits (0’s and 1’s) can travel over.  Bits 

will usually travel in packets or codewords (messages that have been encoded by the 

encoder of an error correcting algorithm), denoted by the symbol C.  While in the 

channel, there is a chance that the bit will lose some or all of its integrity.  A major type 

of channel is the erasure channel, which this project will deal with.  This channel will be 

discussed in the next section. 
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The Erasure Channel 
 

 The erasure channel with erasure probability p erases transmitted bits with 

probability p and accurately transmits bits with probability 1-p.  The chart below details 

this process: 

 
 Therefore, upon receiving a 0 or a 1 from the channel, there is a probability of 1 

that that is the bit that was sent.  If a “?” is received, there is a 0.5 probability of a 1 

having been sent, and a 0.5 probability of a 0 having been sent.  These properties will be 

important in the next section.  The following chart explains this: 

Bit Received Bit Sent Probability 

1 1 1 

0 0 

1 0 0 

0 1 

1 0.5 ? 

0 0.5 
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Error Correcting Codes 
 

 Error correcting codes provide a way of reliably transmitting data over a channel.  

The general idea of an error correcting code is to add extra bits to the message (the 

encoding process), based on the message bits themselves, to create a codeword C.  Once 

passed through a channel, a decoding algorithm can be applied to correct incorrect bits in 

the received message. We can define the “rate” as the number of message bits per bit 

sent, so if there are twice as many bits sent as are in the message, the rate is ½.  An 

example of an error correcting code is a Low Density Parity Check code. 

 

 

Regular Low Density Parity Check Codes (LDPC 

Codes) 
 

 Regular Low Density Parity Check codes are capable of decoding received 

messages with a considerable number of erasures.  In fact, a normal LDPC can decode a 

message properly even if about 42% of the bits are lost over an erasure channel.  These 

codes are made from graphs of message and parity nodes.  The message nodes contain 

the bits of the message from the channel; while the parity nodes ensure that the parity of 

all the message nodes connected to it by the graph are 0.  The procedure for this type of 

code can be broken down into three separate stages: generating a matrix and dual, 

encoding codewords, and decoding. 

• Generating a matrix and dual: the matrix itself will represent a bipartite graph of 

decoding nodes – both parity check and message (also known as equality nodes) – 

that the decoding algorithm will use. All of the 1’s in the matrix will represent a 

mapping from an equality node  (the columns) to a parity check node (the rows).  

First, we need to decide on what qualifies a code as normal, and for the purposes 

of this paper, a “3-6” graph will be normal.  This means that there are 3 edges out 

of each message node and 6 edges out of each parity check node.  Given that each 

node must connect to only one other node, there must be twice as many message 
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nodes as parity check nodes.  This can be represented in a sparse matrix.  A sparse 

matrix is a matrix with few 1’s; this allows a computer to only store the position 

of the 1’s.  In a 5000x10000 matrix, this can save a great deal of memory.  To 

generate a “3-6” sparse matrix, there must be three 1’s per column and six 1’s per 

row.  These should be placed as randomly as possible.  An example of this is 

(where every position represented by the dots would be a zero): 

⎥
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎢
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⎡

1100110110

1011101001
0111010101
1100101110
0011011011
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L

L

L

L

 

The next step is to generate the dual of this matrix.  This can be accomplished 

with a C routine that we were provided with.  The dual is what will be used to 

encode. 

• Encoding: using the dual.  To encode a 5000-bit message with a 5000x10000 dual 

matrix, use multiplication and multiply the message as a vector by the dual 

matrix.  The resultant will be a 10000-bit long codeword vector. 

• Decoding: using the bipartite node graph.  Each message node is connected to 

three unique parity check nodes, while each parity check node is connected to six 

unique message nodes.  This is shown in the following diagram (though there are 

only 8 message nodes): 

 The decoding process over the erasure channel is simplified, as opposed to over 

any other channel, because if a bit is received, it is guaranteed that that bit was sent.  To 

begin decoding, the message from the channel is placed in the equality nodes: 
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These nodes then transmit their messages through all of their outgoing edges: 

 
Next, the parity check nodes try to determine the value of any “?” messages in the 

following way: If, at a parity check node, there is one question mark and all other bits are 

known, then the “?” bit is equal to the sum (mod 2) of all the other bits.  If there is more 

than one “?”, then nothing can be determined.  Following this stage, the newly known 

bits are sent back to the equality nodes: 

 
This process then repeats until all bits are known, or no new bits are learned on any given 

iteration (and therefore errors cannot be corrected): 
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At termination, the corrected message will appear in the equality nodes. 

This entire process can be represented in the following way: 

 

 

Irregular LDPC’s (and their specification) 
 

 In general, LDPC’s can be improved by changing the arrangement of the edges 

between the equality nodes and the parity check nodes.  This improvement can allow 

upwards of 49% of the bits to get erased by the channel, yet decoding will still be 

feasible.  To begin thinking about changing the number of edges from each node, some 

notation must be introduced.  We can define λi to be the fraction of edges that are 

connected to equality nodes with degree i.  We will also define ρi to be the fraction of 
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edges that are connected to parity check nodes with degree i.  The following diagram 

shows an example of an irregular LDPC graph: 

 
In this graph, λ1 is equal to 3/5 because 3 out of the 5 edges are exiting equality nodes 

with degree one; λ2 is equal to 2/5.  All other λi’s are equal to 0 because there are no 

equality nodes of degree higher than 2.  Similarly, ρ2 is equal to 2/5 and ρ3 is 3/5, while 

all the other ρ2’s are 0.  This also implies that for a typical “3-6” LDPC, the following 

conditions hold: λi=0 for i≠3, λ3=1, ρi=0 for i≠6, and ρ6=1. 

It is important to determine how many of the lambda’s and rho’s are free to 

change.  We must introduce some constraints for two reasons.  Firstly, they ensure that 

the lambda’s and rho’s will generate feasible graphs capable of decoding.  Secondly, they 

will lower the number of free variables, making optimization easier.  We will start off 

with L + R free variables, where L is the highest degree of the lambda’s and R is the 

highest degree of the rho’s.  The first two simple constraints are:  and , 

where n is an arbitrarily chosen number representing the highest allowed node degree.  

These ensure that the probabilities add to 1.  In addition, 

1
0

=∑
=

n

i
iλ 1

0
=∑

=

n

i
iρ

0,, ≥∀ iii ρλ .  This must be 

true so that there are no negative values of the lambda’s or rho’s; if there were, you could 

not construct a graph from them.  Obviously, the number of edges out of the equality 

nodes must equal the number of edges into the parity check nodes, which is given by 

∑∑ =
i

i

i

i

ii
λ

β
ρ , where β is equal to 1 minus the rate of the code.  We also must assure 

that λ1=0 and ρ1=0, because if this is not true, then the code may not work properly, or at 

all. This lowers the number of free variables to L + R – 2.  We can remove two more free 
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variables by defining one of the lambda’s and one of the rho’s in terms of all the other 

ones, since their sums must be one: ; this lowers the free 

variables to L + R – 4.   To lower the number of free variables to L + R – 5, you can 

combine these previous relations with 
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λ .  For simplicity, we can set L = R and determine that in 

terms of D, the total number of dimensions – or free variables – in the problem, L and R 

are equal to (D + 5)/2.  A final constraint that must be satisfied is the following 

inequality1: Nj
N
jxxxxf jjjjki ,...,1,,))1(1(::);,,( ==<−−=
δρδλδρλ , where N is the 

number of equidistant, discrete points on the interval (0,δ].  According to the “Efficient 

Erasure Correcting Codes” paper, if at most a δ-fraction of the codeword C is erased, 

independently and at random, there is a high probability that the decoding algorithm will 

terminate successfully. 

 Using various methods, radically different λ’s and ρ’s can be arrived at.  Methods 

suggested by previously written papers include differential evolution, an algorithm that 

produces very good results.  It has been suggested that the Nelder-Mead method might 

produce reasonable results, so this is the method that we are using. 

 

                                                 
1 “Design of Efficient Erasure Codes”, equation 5 
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The Nelder-Mead Method2 
 

 The Nelder-Mead method will allow us to try to find an ideal λ and ρ to decode 

and fix as many errors as possible.  The Nelder-Mead method is typically applied to 

problems that are unconstrained, but in this case, there are all the constraints that were 

discussed in the previous section. 

 To use Nelder-Mead, we will try to maximize the value of δ (or, since Nelder-

Mead is a minimizer, we will minimize the value of -δ) in 0);,,( <jki xf δρλ  while 

trying to avoid violating any of the constraints.  To deal with the constraints, we are 

going to use a penalty function for all solutions that are in violation of the constraints.  

This was a constant on the order of a billion, thereby almost never allowing infeasible 

points. 

 Another consideration is the starting values, because for Nelder-Mead to operate, 

there must be N+1 starting points where N is the number of dimensions.  In our case, this 

will be the value of L + R – 5.  The points create a simplex (an n dimensional object with 

segments connecting all points and faces between all segments).  The 2-dimensional 

simplex is a triangle; the 3-dimensional one is a tetrahedron. 

The way that we created our starting simplex is as follows 

• Create an initial feasible (valid) point using the following procedure3: 

o Set λ3 through λL-1 equal to 
1

1
−L

. 

o Set sL equal to ∑
=−

L

i iL 2

1
1

5. . 

o Set sR equal to ∑
−

=−

1

2

1
2

1 R

i iR
. 

o Define ρR to be 
sR

R

sRsL

−

−
1

. 

                                                 
2 C code for this method, and a description were supplied in “Numerical Recipes in C” 
3 Suggested by Prof. Dan Spielman 
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o Set ρ3 through ρL-1 equal to 
2

1
−
−

R
Rρ . 

o Compute λ2, λL, and ρ2 using the constraints. 

o This point corrects about a 30-35% bit erasure rate. 

• Pick a random direction in the space, and travel from the initial feasible point in 

that direction until an infeasible point is reached.  Add the last feasible point that 

was transversed to the simplex. 

• Repeat the previous step until the simplex is completed (there are N+1 points in 

it). 

 At each iteration, one of the following four things happens (generalized to 3 

dimensions so it can be visualized).  The starting stage might look like this: 

 
In this case, high represents the worst point, based on the minimization, and low is the 

best.  The first possibility is that the high point is reflected through all the other points in 

the simplex resulting in: 

 
A second alternative is for the high point to be reflected and expanded through the 

simplex: 

 
The third option is a contraction away from the high point: 
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The final choice is a contraction around the lowest point by all other points: 

 
The option that is chosen is whichever gives the lowest value of the function that is trying 

to be minimized. 

 The method terminates when none of the choices improve the value of the 

function by more than a tolerance value that we set. 

 At the end of an individual Nelder-Mead run, the results that are produced are not 

very good.  A reason for this could be that the method itself took an anomalous step at 

some point in the run.  Our way of solving this was as follows: Upon completion of a 

Nelder-Mead run, we took the best point in the simplex to be our new starting point.  We 

then perturbed this point into a new starting simplex, and ran the Nelder-Mead method 

again.  This process was repeated until the optimization improved the function by less 

than a second tolerance value.  To continue to improve the percentage of erasures that our 

code could cope with, we repeated this entire process for as long as we had time. 

 Our program displays (via a System.out) the current value of delta, which 

represents the percentage of erasures that can be corrected with the current polynomials. 
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Results and Data 
 

 To standardize our results with the literature, our lambda and rho values will be 

shown as polynomials given by the generating functions:  and 

. 

1

2
)( −

=
∑= i

L

i
i xx λλ

1

2
)( −

=
∑= i

R

i
i xx ρρ

 The first stage in producing high δ values was an overnight run.  During this run, 

the dimensions of the simplexes were randomly chosen from the odd integers between 33 

and 55.  (They were chosen to be odd so that the formula L = R = (D + 5)/2 held with 

integer values of L and R.)  Results of this first stage ranged from δ = 0.45127 to δ = 

0.49001.  The highest value of delta was for a 49-dimesional run.  This first stage allowed 

weak codes to be “weeded” out manually. 

 The second stage of my procedure was taking the polynomial for the best δ value 

and using it as a new starting point.  I eliminated all the other polynomials that I had 

generated. After each run of the Nelder-Mead algorithm, the new best δ valued 

polynomial was taken to restart the method.  In this way, the algorithm can be run 

indefinitely, beginning with an excellent polynomial, though with the improvement 

decaying somewhat per run. 

 The following is the best polynomial that we generated after stage two – it is in 49 

dimensions, therefore, L = R = 27.  This means that our code would correct errors on a 

message where over 49.12% of the bits were erased: 

Polynomial coefficients δ-value 

λ(x) = 0.0990299219062345x + 0.05322429856029543x2 + 
0.055277203574016234x3 + 0.02844910724153615x4 + 
0.02623612386335452x5 + 0.00974806698319024x6 + 

0.043625918242555586x7 + 0.03731895663295148x8 + 
0.03031150462120532x9 + 0.037309402010523x10 + 

0.029597164315280516x11 + 0.021166600459527427x12 + 
0.03415225624197976x13 + 0.041320608127954954x14 + 

0.009263507615627463x15 + 0.018522044947541907x16 + 
0.008887897283874187x17 + 1.8583708480587282E-6x18 + 
0.0024302037195027106x19 + 4.875780862482407E-6x20 + 
1.4847922748886244E-5x21 + 1.278790267836231E-4x22 + 

0.49123208 
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1.8314221090588438E-6x23 + 4.255863080467144E-8x24 + 
1.7067227839464666E-5x25 + 0.4139608113430263x26 

 
ρ(x) = 7.632676934932192E-9x + 8.540515922834572E-9x2 + 

1.347032203221241E-7x3 + 0.018706481130486223x4 + 
0.14176365914019248x5 + 0.048483176456814533x6 + 

0.018207299247641195x7 + 0.0019723149738321006x8 + 
0.03351827937913176x9 + 3.5897497511212437E-4x10 + 
2.192759770277235E-4x11 + 3.094560606056156E-4x12 + 

3.6525537046007547E-4x13 + 6.241422929251609E-4x14 + 
0.0024904768128954646x15 + 0.0010594188309099165x16 + 
2.447810869179167E-4x17 + 0.0019071855087696428x18 + 
9.728748941992965E-4x19 + 0.0035607085025847664x20 + 
8.074336119955476E-4x21 + 0.002270527070515199x22 + 

0.0014808462429242576x23 + 3.4174652757254845E-4x24 + 
0.005969329475817297x25 + 0.714366205554256x26 

The next section will be devoted to the analysis of this above polynomial. 

After the first stage, the above polynomials had the following values: 

Polynomial coefficients δ-value 

λ(x) = 0.09913944229931859x + 0.05276368935878339x2 + 
0.055972280575682924x3 + 0.029674260338107834x4 + 
0.017260488750503292x5 + 0.025448559738954105x6 + 

0.04515638495454221x7 + 0.04030333756774207x8 + 
0.023131373103644444x9 + 0.033836826128835755x10 + 
0.024174237516130185x11 + 0.010565020729052915x12 + 
0.015051741615809872x13 + 0.022709753544240166x14 + 
0.008548520034345693x15 + 0.015265273263572396x16 + 

0.02854094895193963x17 + 0.02263104851684256x18 + 
0.013927898276636303x19 + 0.07122136853087355x20 + 
0.02153165264315276x21 + 0.040808253617859384x22+ 

0.010714065924932058x23 + 0.002728620676797656x24 + 
0.015153512175180905x25 + 0.2537414411665194x26 

 
ρ(x) = 3.6513918555414193E-9x + 5.062364731594058E-7x2 + 

0.00574684527124305x3 + 0.028838659620213876x4 + 
0.11906353643723967x5 + 0.0480945379927659x6 + 

0.022608297965228147x7 + 0.0010237641058132966x8 + 
0.0336234867070067x9 + 1.5748300415421974E-6x10 + 

0.003049627548126765x11 + 0.001942286492248885x12 + 
7.533265390057562E-5x13+ 2.917591878192492E-7x14 + 
8.144447734694117E-4x15 + 0.001000888374498451x16 + 
6.469655073957167E-4x17 + 7.214491255120121E-4x18 + 
0.0014739803468346929x19 + 0.0026517581811077x20 + 

0.0026718342756574406x21 + 0.0026424921242295726x22 + 
0.0011782712186155905x23 + 1.1747323851536007E-4x24 + 

0.007483472621880171x25 + 0.7145282189414026x26 

0. 49001044 

For comparison, the following are the polynomials for the second best delta value 

before the “weeding” process (this is in 43 dimensions): 
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Polynomial coefficients δ-value 

λ(x) = 0.11274587736727337x + 0.06498455715355583x2 + 
0.03969428250127628x3 + 0.048961038412381516x4 + 
0.028189656203807884x5 + 0.03628565340232763x6 + 

0.039921651057134x7 + 0.048561615545643276x8 + 
0.01035366914158521x9 + 0.03930103848736154x10 + 

0.01204419343378802x11 + 0.0026297657792068107x12 + 
0.007466072446663316x13 + 1.1199455054028839E-6x14 + 
8.821403829892515E-5x15 + 1.7479984313786059E-4x16 + 
0.03459305011604132x17 + 0.021583402329676413x18 + 

0.004596632861824698x19 + 0.044462415543915126x20 + 
0.04567687942127912x21 + 0.12447510904948544x22 + 

0.23320930591883104x23 

 
ρ(x) = 2.3126878301304998E-7x + 1.1951953253748004E-8x2 + 

2.2733910865119922E-4x3 + 0.030190568328413908x4 + 
0.1772726933792846x5 + 0.016180678882956462x6 + 

0.0060195214101926246x7 + 0.003991365160585282x8 + 
0.01969672231078712x9 + 0.004628767552064218x10 + 

0.001422882353708355x11 + 0.008258629068767844x12 + 
0.01995513667205749x13 + 9.895079953920287E-4x14 + 

0.0017074274635243986x15 + 2.6541462280539835E-4x16 + 
1.345166853321739E-6x17 + 0.0014414245548813587x18 + 

0.0019873824492244265x19 + 0.0010053649143326932x20 + 
1.205146724011483E-4x21 + 7.158366228945121E-4x22 + 

0.7039212340894853x23 

0.48937541 

Given time, this polynomial could have had stage two applied to it; in which case, 

the delta value could have been considerably higher. 

 

 

Analysis 
 

 There are two main ways for us to analyze our λ’s and ρ’s. 

1. Theoretically 

a. To determine whether a codeword is capable of being decoded after 

having passed through the erasure channel with probability of erasure p0, 

we need to make sure that the plot of ))1(1()( 1−−−= ∑ i

i
i xx ρρ  lies 
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above the plot of 1
0)( −∑= i

i
i ypy λλ  at all points4.  These two formulas 

have been derived for us in Lecture Notes for lecture 17.  This is an 

extremely accurate way of determining whether all the errors can be 

corrected. 

2. Experimentally 

a. This can be done simply, by using our λ’s and ρ’s to create a random 

encoding matrix.  Using this matrix, we can encode some codewords to 

send over the erasure channel with various probabilities of erasure.  Upon 

running the decoding algorithm, it would not be hard to tell if the decoder 

was capable of decoding at a given probability of erasure. 

For the sake of this paper, I shall test the polynomials using the first method.  In 

addition, I will make use of the program’s outputted value of delta.  This should be the 

first probability where the lines cross. 

 The polynomial that we generated can correct messages with up to a 49.12% 

erasure rate, as outputted by the program. 

Here is the graph of λ(x) and ρ(x) at p = .42, the value where a normal LDPC 

begins to fail: 

                                                 
4 Lecture Notes: Lecture #17 
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Here is the graph at p = .48 (zoomed in on the closest point): 
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Here is the graph at p = .49 (again zoomed in, this time even further), a successful value, 

yet somewhat close to the failure point: 

 
Finally, here is the graph at p = .495, a value at which correction will fail; the lines cross: 
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Conclusion 
 

 Given an ample amount of time to run the algorithm, I believe that the Nelder-

Mead method will produce extremely good polynomials for Low Density Parity Check 

coding.  At the time that I had to stop the algorithm to compile the results, delta was still 

increasing by a few thousandths of a percent per iteration. 

The polynomials that our program did generate are capable of correcting more 

than a 49.12% bit erasure rate.  This value is better than the linear programming approach 

that was used in the “Design of Efficient Erasure Codes with Differential Evolution” 

paper; none of these codes had a delta greater than 48.86%.  Our codes do not appear to 

be as good as those that used differential evolution.  This may not be the case, as the 

differential evolution codes were run on the order of 2,000,000 iterations, while ours only 

ran a few hundred thousand iterations.  This is especially true because the Nelder-Mead 
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method is known to be one of the slowest optimization methods5.  Another way for us to 

improve our codes would be allowing infeasible points during the iterations, and then 

filtering them out before outputting the polynomials.  Finally, a different algorithm for 

determining the starting simplex could give drastically different results.  Our starting 

simplex, though in the middle of the dimensional space, could only correct in the mid 

30%’s erasure rate. 
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Appendix: Java Code 

 

 Our Java program’s source code is attached. 

 

                                                 
5 Numerical Recipes in C 
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