
Revisiting a High-Performance Serially-Concatenated Code

Yang Yang

May 31, 2004

Abstract

This paper aims to verify the performance of a serially concatenated code proposed by
Stephan ten Brink [1]. The code combines an outer rate one-half repetition code with an inner
rate one convolutional code, separated by a permuter. The code is claimed to reach a bit error
rate under 10−5 by 0.28 dB.

1 Introduction

The premise of soft iterative decoding is that given the probability that each encoded bit sent across
a channel was a certain value, similar information can be calculated for the original message bits.
This process, known as belief propogation, has proven to be useful in a variety of decoding schemes,
and often has an intuitive foundation in graph theory. The implementation of the convolutional
code incorporated in the proposed concatenated code, described later, is one example of this.

The success of such codes is often judged by their ability to reach low bit error rates (fraction
of incorrect bits after decoding) across channels with capacities near the theoretical limit given by
Shannon [2]. For codes with rate one-half (i.e. encoding doubles the length of message words), this
limit is a signal-to-noise ratio (SNR) of 0.19 dB for the Gaussian noise channel. Stephan ten Brink
claims that the bit error rate of the proposed code is less than 10−5 at 0.28 dB.

The proposed code is formed by concatenating a repetition code, a random permutation, and
a convolutional code. This is a variation on the popular serially-concatenated codes that use two
convolutional codes [3]. In the decoding process, the repetition and convolutional decoders can be
seen as modules which take estimates for each bit and use the structure of the corresponding encoder
to calculate each bit’s extrinsic estimates. The two modules pass these probability estimates back
and forth across the permuter, ideally improving on the estimates with each iteration. Since a bit
error can negatively affect the decoding of a neighboring bit, the motivation of the permuter is to
isolate such errors for a more robust code.

2 Encoding

2.1 Repetition Code

The repetition code is a simple code that is not particularly successful alone. It merely repeats
each message bit a set number of times. The repetition code in this case has rate 1/2, so each bit
appears twice in a row in the output codeword.

1

2.2 Permuter

The permuter, also known as an interleaver, changes the order of the repetition encoder output
according to a set permutation. Randomly generated permutations have been effective here, but in
any case the permutation must be agreed upon by both the encoder and the decoder [3]. Clearly,
the permuter has rate 1.

2.3 Convolutional Code

The bulk of the encoding process lies in the convolutional code, a code described by both [3] and
[4] and that has many variations. The convolutional encoder consists of a set of delay registers,
initialized to 0, which determine the state of the machine. Since this encoder has three delays,
there are 23 = 8 possible machine states. At discrete points in time, an input bit is sent to the
encoder, each delay both sends a previously stored bit and receives a new bit, and a set number of
output bits is produced. In the given convolutional encoder, the output is the parity of the delays,
the delays simply shift bits rightward, and the first delay takes on a new value that is the sum
of the input bit and the current output. For each input bit, one output bit is produced, so this
convolution code has rate 1.

2.4 Doping

Often the practice of omitting a small number of output bits from the convolutional encoder, called
puncturing, is used to increase the code rate [4]. Stephan ten Brink proposes a variation of punc­
turing called “doping” that leaves the rate unchanged. Instead of output bits being omitted, they
are replaced by the corresponding input bits coming directly from the permuter. The motivation
for doping is explained by the EXIT chart technique [1]. This paper follows ten Brink’s terminology
where a “systematic bit” is an output bit of the permuter that takes the place of its corresponding
convolutional “coded bit” in the codeword. The ratio of systematic bits to coded bits is small;
in this case, the doping ratio is 1 : 100. Although no particular distribution of systematic bits
is specified, the decoder needs to know this distribution along with the permuter, so a uniform
distribution is most easily implemented.

The overall rate of the concatenated code is the product of the rates of the components. In
this case, the code rate is (1/2) × (1) × (1) = 1/2.

3 Channel

The channel across which the encoded bits are sent is the Gaussian channel, which adds Gaussian
white noise. The SNR varies between 0 and 1. As is common in soft iterative decoding, the
implementation of the channel outputs the more useful probability that the sent bit was a certain
value instead of the actual value received.

4 Decoding

The decoding algorithm takes as input the probability estimates for each codeword bit from the
Gaussian channel, and starts by applying the convolutional decoder; recall that the decoder must

2

be able to differentiate systematic bits from coded bits. This produces estimates for the permuted
bits, which are then fed through the inverse permuter and sent to the repetition decoder. At
this point, the results of the repetition decoder can either be used as final guesses for the original
message bits or be sent back through to permuter. For the second and subsequent iterations, the
convolutional decoder combines the estimates from both the permuted repetition decoder results
and the channel. Thus, this process is soft in that probability estimates rather than hard binary
bits are propogated, and iterative in that the propogation loop can continue indefinitely.

4.1 Convolutional Decoder

Note that this section is described in greater detail by Fan [4]. The convolutional decoder normally
takes as input estimates for both the systematic bits and the coded bits along with preset informa­
tion about the finite automaton that was used. In this case, the estimates for the systematic bits
come from the permuted results of the repetition decoder (for the first iteration, this information
is null; that is, the probabilities are 0.5) and the occasional systematic estimate from the channel.
These two probabilities are combined as if for a rate one-half repetition decoder:

p1p2
p = (1)

p1p2 + (1 − p1)(1 − p2)

Note that when one of the estimates is 0.5, the total information is that of the other estimate.
Naturally, this formula will reappear in the repetition decoder component.

For each transmitted codeword, the estimates for the coded bits are constant; they come for the
most part directly from the channel. Whenever the channel provides an estimate for a systematic
bit, the information about the corresponding coded bit is set to null (i.e. probability that the coded
bit was 1 is 0.5).

The decoding algorithm for a convolutional code involves the belief propogation of messages
containing probabilities for the state of the finite automaton, sent forward and backward in time.
The principle behind this is that at any point in time, the message traveling forward contains the
combined information of all systematic and coded estimates before it, and the backward message
contains information from later estimates. Thus, a certain input bit’s extrinsic probability, taking
into account all other estimates except for its own, can be found by combining the forward and
backward messages with the corresponding output bit estimate.

A state change of the finite automaton can be described by a bipartite graph called a trellis
consisting of the initial and final states as vertices and all possible transitions from the former to the
latter as edges. Propogating messages forward in time involves calculating the probability of each
final state, given the probability of each initial state and the estimates for the input and output
bits corresponding to this transition. Specifically, if s0 . . . s7 are the states, S is the set of ordered
pairs (i, j) describing valid transitions si � sj , and wi�j and vi�j are respectively the input and
output values of such a transition, then at time t

pt(sj) = ct

pt−1(sj) pt−1(wi�j) pt−1(vi�j)

(i,j)�S

where ct is a normalizing constant such that
� 7

j=0 pt(sj) = 1. The initial condition for the forward
direction is p0(s0) = 1. Thus, the message-passing process is fast because each of the above values,
other than ct, is immediately known. Passing messages backward given pt+1(s), pt+1(w), and

3

pt+1(v) is nearly identical, with the exception that the initial conditions contain no information,
i.e. pn(s) = 1/8.

Finally, after messages have been passed both ways, the extrinsic probability of the input bit is
given by

←
t

pt(vi�j)

�
()p s+1 jt

�
()p sitpt(w = w0) = c

(i,j) � S
wi�j =w0

�
are the forward and backward messages, p

�
andpwhere c
← t normalizes pt(w = 0) and pt(w = 1), and

respectively. In this case, pt(w = 1) is the information sent to the inverse permuter.

4.2 Repetition Decoder

The repetition decoder receives from the inverse permuter a pair of estimates for each message bit.
When passing extrinsic estimates back through the permuter, the information for each bit comes
solely from the other estimate for the same original message bit. Thus, the repetition decoder
merely swaps the two probabilities for a message bit. However, at the final stage when posterior
probabilities are wanted, equation (1) combines the two probabilities.

5 Results

5.1 Revising the Claim

The main results relevent to ten Brink’s claim are shown in Figure 1. When the experiment was
simulated for codelength 2 × 104, 100 iterations, and a 1:100 doping ratio, the results were poorly
matched with ten Brink’s original results. The bit error rate is markedly higher for channels with
SNR between 0.4 and 0.8 dB. The original results show a steady decrease in BER on this interval,
but the new results show what ten Brink calls a “turbo cliff,” or a rapid drop in BER, at 0.8 dB
SNR.

The results for the simulations with codelength 2 × 105, 100 iterations, and with codelength
1 × 106 , 300 iterations were closer to ten Brink’s. Both of these performed significantly better
than the classic parallel concatenated codes, or Turbo codes, given by ten Brink for comparison.
However, the turbo cliffs for these parameters occured at high SNR’s than claimed. In particular,
the 0.28 dB turbo cliff exhibited by the latter code actually occured at 0.32 dB.

5.2 Varied Doping Ratios

The original choice to use a doping ratio of 1:100 [1] seems arbitrary. Thus, the simulation was
performed with doping ratios 1:n for n = 5, 10, 20, 50, 100, and 200, holding all other parameters
constant (codelength 2 × 104 and 100 iterations). When n is low, there are too many systematic
bits and much of the redundancy of the finite automaton is forfeit. When n is high, ten Brink’s
EXIT chart argument is convincing; with too few systematic estimates, the convolutional decoder’s
transfer characteristic intercepts the y-axis near 0, so that starting the iterative process is difficult
[1]. Thus, there is an optimal set or range of doping ratios. For the given parameters, Figure 2
shows that a ratio of 1:50 results in the best performance. Simulating with finer values of n is

4

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

B
E

R

claims: 2e4, 100
2e5, 100
1e6, 300

actual: 2e4, 100
2e5, 100
1e6, 300

SNR [dB]

Figure 1: Comparison of claimed and actual bit error rates for various codelengths and iterations

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1 1

B
E

R

0.0 dB
0.2 dB
0.4 dB
0.6 dB
0.8 dB

Doping ratio

Figure 2: Bit error rates for codelength 2e4, 100 iterations, at various doping ratios

5

likely to improve on this value. In addition, the advantage of a well-chosen doping ratio is more
significant at higher SNR’s.

5.3 Varied Iteration Lengths

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

B
E

R

Number of Iterations

Figure 3: Progress of bit error rate for decoding 2e4 bits at 1 dB

Lastly, the number of iterations used in the decoding process before outputting a final guess
can be varied. This is equivalent to tracking the progress of decoder at various points in time.
Figure 3 shows the result of this investigation for codelength 2 × 104 at SNR of 1 dB. Although
the code reaches a successful BER of 1.5 × 10−5 by 100 iterations, it could have stopped after
40 iterations for the same BER. Thus, no improvement on the BER is possible after a certain
number of iterations, and subsequent calculations are unproductive; knowledge of this point is
useful especially in time-critical situations.

6 Conclusion

6.1 Summary

Although the results of this experiment did not accurately verify Stephan ten Brink’s proposal, it
is evident that this particular serial concatenation of repetition and convolutional codes performs
well in comparison to Turbo codes (Figure 1), exhibiting a turbo cliff at 0.32 dB instead of the
claimed 0.28 dB. This small discrepancy might be due to differences in implementing systematic
doping; it is possible that another distribution of systematic bits among the codeword will improve

6

the code’s performance. Using a different doping ratio (closer to 1:50) can also achieve lower BER
(Figure 2). Finally, the efficiency of the decoding process can be increased if it is known that the
BER will not improve with additional iterations past a certain point (Figure 3).

6.2 Source Code

The experiment was written in C++ and compiled with GCC 3.3.1 for GNU/Linux. The relevent
source code is available at http://mit.edu/y_yang/Public/18.413 along with large versions of
the graphs.

6.3 Acknowledgment

This work was carried out in the Error-Correcting Codes Laboratory course at MIT, under the
guidance of Professor D. A. Spielman.

References

[1] S. ten Brink, “A rate one-half code for approaching the Shannon limit by 0.1dB,”	 IEE Elec­

tronics Letters, vol. 36, no. 15, pp. 1293–1294, July 2000.

[2] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Jour­

nal, vol. 27, pp. 379–423, 623–656, July, Oct. 1948.

[3] D. A. Spielman, “Error-Correcting Codes Laboratory” Lecture Series. MIT, Cambridge. 2 Feb.
2004 – 15 Apr. 2004.

[4] J. L. Fan, Constrained Coding and Soft Iterative Decoding. Kluwer, Boston, 2001.

7

