
18.417 Introduction to Computational Molecular Biology 

Problem Set 4 Issued: October 12, 2004 
Lecturer: Ross Lippert Due: November 2, 2004 

Many of these problems are original or taken from other sources. It 
is quite possible that I have made some problems which are misworded or 
otherwise impossible, though I hope not. 

1. (*) (4.13 revisited:) Given two binary circular strings X = x0x1 . . . xn−1 

and Y = y0y1 . . . yn−1, let X � Y be the sequence of integers such that 
X � Y (i) = 

�n−1 
j=0 xj yi+j . Show that there exists a O(n log(n)) method 

to construct the sequence X � Y . (Hint: you may need a well-known 
algorithm not mentioned in class.) 

Give an algorithm for 4.13 of JP (finding a pattern s in a text T with 
� k mismatches) which runs in O(|�||T | log |T |) time for strings over 
an alphabet �. 

2. Sketch	 the Aho-Corasick finite state machine which recognizes the 
words aabb, abba, and bbaa. Sketch the suffix tree of ‘abracadabra’ 
including suffix links. 

3. Compute the Burrows Wheeler transform of ‘mississippi’ 

4. Describe	 an implementation of a suffix tree which requires no more 
than 20 bytes of space per character and is capable of indexing strings 
of lengths up to 230 − 1. If you can’t, just get as close as you can. 
Describe the space required in terms of valid C-structs or C++-classes1 

for the internal nodes and leaves. If you need to assume that a pointer 
is 32 bits (I don’t think you do), you may. Feel free to look at publicly 
available suffix tree codes for inspiration or answers.2 

5. Give a fast algorithm which will reconstruct a string S ∪ �n from its 
Burrows-Wheeler transform B ∪ (� � {$})n+1 . Recall that you can 

1or some other popular language or very precise English

2I haven’t seen a 20 byte implementation in the public.


1 



2	 Problem Set 4: 18.417 

evaluate occ(B, i, c), the number of occurrences of character c at all 
positions less than i, in O(log(n)) time. 

Let � be the permutation which sorts of the suffixes of S, i.e. S[�(i) . . . n] < 
S[�(i + 1) . . . n]. Give a variation on the above algorithm which con­
structs � from the BWT of S. 

(Extra Credit:) Let �(i) be the length of the longest common pre­
fix of S[�(i) . . . n] and S[�(i + 1) . . . n]. Give a fast algorithm which 
reconstructs � from the BWT of S. 

6. (*) 9.9 of JP. Recall that a tandem repeat of S is an occurrence of a 
substring of S of the form BB for some string B. (Hint: there is a 
divide and conquer approach to this which is O(n log(n)) in time.) 

7. 9.11 and 9.13 (they are closely related) of JP 

8. 9.2 of JP. Random text refers to independent and identically distributed 
latters with probability pi for letter i. 

9.	 3 Modern filtration methods do not use matching k-substrings as a 
basis for filtration but use general k-subsequences. A k-subsequence, 
sometimes called a gapped k-gram, is a concatenation of letters taken 
from a set of k relative positions in S. The relative positions are of­
ten specified by a bit-string (called a mask) with exactly k 1s. For 
example, for the string atttgctcgc, the 4-grams with mask 110101, are 
attc, ttgt, ttcc, tgtg, gccc. 

Given a binary string, R, we say that the mask M covers R when R 
contains a substring which is 1 whereever the corresponding character 
in M is 1. 

(a) Let R be a binary string of length m containing ( 5 +�)m 1s (where 
7 

� is a positive constant). Prove that for sufficiently large m, all 
such R are covered by the mask 11011 (i.e. there must be a sub­
string of length 5, which looks like 11g11, where g is either 0 or 1). 
Now show that for any m, there exists a binary string containing 
at least 3 m 1s that is not covered by 1111. 
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3My thanks to Bin Ma of U. Western Ontario for these problems. 
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(b) Let R be a randomly generated binary string of length 64, where 
each position is 1 with probability 0.7. Write a program to gen­
erate one million such strings, and check how many of them are 
covered by the masks 111010010100110111 and 11111111111 re­
spectively. 


