
18.417 Introduction to Computational Molecular Biology 

Lecture 7: September 30, 2004 Scribe: Mark Halsey 
Lecturer: Ross Lippert Editor: Rob Beverly 

Divide and Conquer: More Efficient Dynamic Programming 

Introduction 

We have seen both global and local alignment problems in previous lectures. Briefly: 

•	 Global Alignment: We are given: 

–	 Two strings v and w 

–	 An indel (insert/delete) penalty � 

–	 A match/mismatch scoring matrix � 

The goal is to find an alignment, including indels, matches and mismatches 
of the two strings such that the score is maximized. There may be multiple 
optimal solutions. 

•	 Local Alignment: Unfortunately, in many instances there will only be a por­
tion of the two strings that is highly conserved. Thus, the problem is to find 
substrings of v and w that are highly similar while ignoring the remainder of 
the strings. The input to the problem is the same as in global alignment. The 
output should be substrings of v and w whose global alignment is maximal 
among all possible substrings of v and w. 

We have used dynamic programming to design efficient algorithms to solve these 
problems. This lecture considers two correct improvements to the alignment problem: 

•	 Space-Efficient Sequence Alignment: computing the alignment solution again 
in O(nm) but with only O(min({n, m})) = O(n) (linear) space. 

•	 Block Alignment and the Four-Russians Speedup: computing alignment in 
2 nO( 

logn ) time. 

7-1 



7-2 Lecture 7: September 30, 2004 

Space-Efficient Sequence Alignment 

The space complexity of the algorithms we have seen previously is proportional to 
the number of vertices in the edit graph, i.e. O(nm). Observe however that the only 
values needed to compute the alignment scores in column j in the DP table are the 
scores in column j − 1. Therefore only two columns worth of space are required to 
compute the best score which is O(n). However, recall that we use the b matrix to 
store backtracking pointers in order to reconstruct the longest path in the edit graph. 
b is an nxm matrix, so some clever insight is needed to bring the space needs down. 

Consider the edit graph. Any optimal alignment from (0, 0) to (n, m) must pass 
through the middle column m . We will show that we can find the point i at which 

2 
i, m 

2
the optimal alignment passes through the middle column, i.e. the point ( ) without 
knowing the longest path in the edit graph. 

i, m 
2 (i

, i, m 
2 (i

(i, m 
2 

Vertex ( ) partitions the edit graph into two optimal paths: pref ix ) which is 
the optimal path from (0 0) to ( ) and suf f ix ) which is the optimal path from 

) to (n, m). This is shown graphically in Figure 7.1. 

Note that the optimal alignment is simply pref ix(i) + suf f ix(i). pref ix(i) can be


m

mm/2

Prefix(i)

Suffix(i)

(i, m/2)

Adapted from Figure 7.1: Linear-Space Sequence Alignment



7-3 Lecture 7: September 30, 2004 

mcomputed by finding the score si, , i.e. we compute the score in linear space as shown 
2 

earlier for just the first half of the graph. To compute the suf f ix, we rely on the fact 
that in a DAG we can flip the direction of the edges and reverse the computation. 

mThus, for the second half of the edit graph (nx 
2 ), we can reverse edges and compute 

the score from (n, m) to (i, m 
2 ). 

Combining pref ix(i) + suf f ix(i) gives the score of optimal alignment that passes 
through (i, m 

2 ). Because the space-efficient alignment score computation maintains 
column vectors, it is easy to determine max0�i�n (pref ix(i) + suf f ix(i)). This in 
turn gives the optimal i which defines the optimal midpoint. 

This process can be repeated by continual halving and computing the midpoint as 
shown in Figure 7.2. By iteratively halving and computing the optimal alignment 
midpoints we can reconstruct the complete optimal alignment. Note that after each 
halving we’ve reduced the time complexity of the subproblem in proportion to the area 
of rectangle defined by the optimal midpoints. Finding the midpoint of each rectangle 
requires: area + area 

4
+ area + · · · . Thus, the total time complexity is O(nm).

2 

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

Adapted from Figure 7.2: Iteratively Computing the Optimal Alignment Midpoints



7-4 Lecture 7: September 30, 2004 

Block Alignment and the Four-Russians Speedup 

The time complexity of the dynamic programming global alignment algorithm we’ve 
studied previously was O(n 2). In this section we examine a trick to speedup the 
algorithm to sub-quadratic time. Note that no non-trivial lower bound exists for 
global alignment and an O(nlogn) would likely revolutionize bioinformatics. We 
will begin by examining the block alignment problem in conjunction with the Four-
Russians speedup. The next section extends the intuition here to longest common 
subsequence (LCS) speedup. 

Consider our two strings to align: v and w. Without loss of generality, assume that 
n = |v| = |w| and are divisible by some t. We can partition v and w into 

t 
n chunks of 

size t. This partitioning leads to the edit graph of Figure 7.3. 

If we were to solve the “mini-alignment” of each txt sub-grid, we could then perform 
block alignment of the blocks defined by the partitioning. In other words we construct 
a path that includes going through a block (from the top left to the bottom right) or 
along the edges of a block. Thus we are restricting entry and exit to the corners of 
blocks. 

The block alignment problem is: 

• Given: Two strings v and w partitioned into blocks of size t 

Block pair represented by each 
small square

n/t

n/t

Solve mini-alignment

Adapted from Figure 7.3: Partitioning the Edit Graph into Mini-Alignments



� 

� 

7-5 Lecture 7: September 30, 2004 

• Output: The block alignment of v and w with the maximum score 

Let �i,j be the alignment score for the (i, j) block. The recurrence for the block 
alignment algorithm is: 

⎧ 
� si−1,j − �block 

si,j = max si,j−1 − �block 
⎧ 

si−1,j−1 + �i,j 

where �block is the indel block penalty. Since the indices of the recurrence vary from 
0 to n , we have an O( n 2) algorithm. But computing each block score �i,j requires

t t 
solving 

t 
n 2 mini-alignments of size txt which amounts to O(n2) time. Therefore we 

have not yet achieved any speed improvement. 

The Four-Russians technique is to set t = logn and precompute an exhaustive table 
4 

of all 4tx4t alignments. 4tx4t = n total entries in the table. Computing each entry 
in the table requires O(log2n) time, so to compute all n entries in the lookup table 
requires O(nlog2n) time. 

As noted above, the block alignment recurrence requires O( n 2) time. Looking up an 
t 

element in the lookup table takes O(t). Therefore, given a lookup table, the block 
2 2 nalignment algorithm takes O( n ) = O( 

logn ). We then add the time to compute the 
t 

lookup table, but see that the overall time is dominated by the n2 term. Therefore, 
2 nthe overall running time is: O( 

logn ). 

LCS and the Four-Russians Speedup 

Finally, the path corresponding to the LCS does not necessarily enter and exit through 
the corners of blocks. In this section we turn to the more involved problem of allowing 
unrestricted entry and exit between blocks in the partitioned edit graph. We will rely 
on the intuition from the block alignment Four-Russians speedup. 

Instead of performing dynamic programming on corner vertices of the blocks, we 
will use DP on the vertices of the edges of the blocks, ignoring the internal block 

2 
vertices. This total O( n

t ) vertices in the DP. Thus, the problem amounts to finding 
the alignment scores of the last row and last column of the txt blocks. 

Using the Four-Russians speedup, we wish to construct a lookup table. Such a table 
would again include all pairs of t length strings and all pairs of possible scores for the 



7-6 Lecture 7: September 30, 2004 

first row and first column. For each of these entries, the table would have precomputed 
scores for the last row and last column. But this table would be very large as it would 
include all possible scores for the first row and column. To alleviate this, we rely on 
the fact that the scores in the first row and column are not arbitrary. The scores must 
be both monotonically increasing and adjacent elements cannot differ by more than 
1. Thus, the possible scores can be encoded as a vector of differences. This table is 
depicted in Figure 7.4. 

Figure 7.4: Mini-Alignment Lookup Table for LCS 

As there are 2t possible scores and 4t possible strings, the lookup table requires 
2t2t4t4t = 26t space. Setting t = 

4 
logn as before makes the table of size O(n1.5). This 

allows computation of the n1.5 entries in the table to be constructed in O(n1.5log2n) 
time. As in the block alignment problem, this time is dominated by the DP and 

2 nallows for an O( 
logn ) algorithm. 


