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Hidden Markov Models 

The CG island phenomenon 

The nucleotide frequencies in the human genome are 

A C T G 
29.5 20.4 20.5 29.6 

Frequencies of particular nucleotide pairs tend to be steady across the human genome. 
One exception to this is CG , which appears with expected frequency in and around 
genes but hardly appears in junk DNA. This occurs because CG in junk DNA is 
typically methylated, and methylated CG tends to mutated into TG . CG islands are 
runs of DNA where CG has much higher-than-normal frequency, indicating the likely 
presence of genetic data. 

Heuristics like sliding window searches can be used to locate CG islands, but instead, 
we’d like to analyze the sequence to find what the most likely CG islands are. 

We can model the CG island problem as the “Casino with Two Coins” problem. 

Casino With Two Coins 

In the Casino with Two Coins problem (the book refers to it as the Fair Bet Casino 
problem), the casino has two coins, one fair and one biased. The input to the problem 
is a binary sequence, the results of the coin tosses. The output is the most likely 
“tagging sequence” indicating which coin was used for each toss. 

Given a particular tagging sequence S1, S2, . . . , Sk and a corresponding data sequence 
X1, X2, . . . , Xk , we define the probability of the data given the tagging model as 

n 

Pr {data | tagging} = Pr {Xi | Si} . 

17-1 

� 

i=1 
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We will write Pr {Xi | Si} as Pr {Si � Xi}, read Si emits Xi. 

Not all tagging sequences are created equal: some might be more likely than others. 
For example, perhaps we know that the dealer in the casino changes coins infrequently. 
To model this, we also take as input a matrix specifying the probability of moving 
from state S to state S �, written Pr {S � S �}. 

The probability of a tagging sequence is given by 

n−1 

Pr {tagging | transition probabilities} = Pr {start in S1} 
� 

Pr {Si � Si+1} . 
i=1 

The individual probabilities used so far make up the hidden Markov model or HMM, so 
named because it is a Markov model (a state machine) where the states (the tagging) 

1cannot be directly observed. For example, if the dealer has a 
10 chance of changing 

3coins at each step, and if the biased coin is 
4 heads, then the Markov model is given 

by: 

9 1 
Pr {F � F } = Pr {B � B} = 

10 
Pr {F � B} = Pr {B � F } = 

10 
1 1 

Pr {F � H} = 
2 

Pr {F � T } = 
2 

3 1 
Pr {B � H} = 

4 
Pr {B � T } = 

4 

We might depict such a model graphically as:
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Notation of Hidden Markov Model 

Typically we introduce some shorthands for the probabilities that make up the HMM. 
Since they are actually complete probability distributions, the probabilities for each 
set of outcomes must sum to one. 

T = [tij ] = [Pr {i � j}]; 

 

tij = 1 
j 

E = [eix] = [Pr {i � x}]; 

 

eix = 1 
x 

� = [Pi] = [Pr {model starts in state i}]; 

 

Pi = 1 

Sometimes � is omitted and it is assumed to be the left eigenvector of T with eigen­
value 1. We know � has such an eigenvector because it has a trivial right eigenvector 
(1) with eigenvalue 1. 

It is also convenient to introduce the diagonal matrix Dx whose diagonal has Eix (for 
some fixed x) as its entries. 

Under the new notation, our first problem is to compute the likelihood of a particular 
observation X given HMM parameters T , E, and �. Combining the equations we 
gave earlier, we have that 

Pr {X | T, E, �} = �D T . . . TDxn 1.x1 

It is conventional to split this computation into two halves f(k, i) and b(k, i). The 
forward half f(k, i) is the probability of ending up in state i after k moves, and the 
backward half b(k, i) is the probability of ending up in state i when k moves away 
the end of the sequence. 

That is, 

[f(k, i)] = [Pr {x1, . . . , xk , sk = i | T, E, �}] = �Dx1 T . . . TDxk 

[b(k, i)] = [Pr {sk = i, xk+1, . . . , xn | T, E, �}] . . . TDxn 1= TDxk+1 

Combining these we get the original probability: 

Pr {X | T, E, �} = [f(k, i)][b(k, i)] = 

 

Pr {paths going through i} . 
i 



17-4 Lecture 17: November 4, 2004 

This tells us that 

f(k, i)b(k, i)
Pr {sk = i | T, E, �, X} = �

i f(k, i)b(k, i) 
, 

which suggests an obvious method for computing the most likely tagging: simply take 
the most likely state for each position. 

Unfortunately, this obvious method does not work. Really the most likely sequence is 
arg maxS Pr {S | T, E, �, X}. To find the maximum sequence, we can use a dynamic 
programming algorithm due to Viterbi. The necessary state is an analog to f(k, i), 
except that instead of summing over all incoming arrows we can only select the best 
one. 

The Viterbi dynamic programming algorithm can be viewed as a tropicalization of 
the original f and b functions. This is examined in detail in the next lecture. 

Training an HMM 

Much of the time we don’t know the parameters of the HMM, so instead we train 
it on inputs, trying to derive parameters that maximum the likelihood of seeing the 
observed outputs. That is, given one or more sequences X, find T, E, � that maximize 
Pr {X | T, E, �}. 

Unfortunately, this problem is NP-hard, so we’ll have to content ourselves with heuris­
tic approaches. 

Expectation Maximization (EM) 

One very effective heuristic approach for training an HMM is called expectation max­

imization, due to Baum and Welch. It is a local gradient search heuristic that follows 
from techniques for gradient search on constrained polynomials. It may not find a 
global maximum, so typically it is run a handful of times, starting from different 
initial conditions each time. 

We will assume that � is the eigenvector of T as discussed above, so we need only 
worry about E and T . We start with some initial E and T , usually chosen randomly. 

ˆThen we compute a new E and T̂ using the following rules: 
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1 

Pr {i � x} = Pr {path has sk = i}

C 
k:xk =x 

1 
= 

C



f(k, i)b(k, i) 

k:xk =x 

1 
 

k 

 

k 

Pr {path has sk = i, sk+1 = j, and j emits xk } 

(f(k, i) Pr {i � j} Pr {j � xk } b(k + 1, j)) 

Pr {i � j} = 
C 

1 
= 

C 

ˆThis recomputing is iterated until the E and T̂ converge. 

In general, expectation maximization sets Pr {â} in proportion to the number of 
1times event a needs to happen compared to other events happening. The 
C is a 

normalization term to make the probabilities sum to 1 when necessary. 


