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Gibbs Sampling

Introduction

Let’s first recall the Motif Finding Problem: given a set of n DNA sequences each of
length ¢, find the profile (a set of I-mers, one from each sequence) that maximizes the
CONSensus score.

We have already seen various naive brute-force approaches for solving this problem.

In this lecture, we will apply a probabilistic method known as Gibbs Sampling to
solve this problem.

A probabilistic approach to Motif Finding

We can generalize the Motif Finding Problem as follows: given a multivariable scoring
function f(y1,v2,...,yn), find the vector ¥ that maximizes f.

Consider a probability distribution p where p ~ f. Intuitively, if f is relatively large
at the optimum, then if we repeatedly sample from the probability distribution p,
then we are likely to quickly encounter the optimum.

Gibbs Sampling provides us a method of sampling from a probability distribution
over a large set.

We will use a technique known as simulated annealing to transform a probability
distribution into one that has a relatively tall peak at the optimum, to ensure that
Gibbs sampling is likely to quickly encounter the optimum. In particular, we will
observe visually that the probability distribution p ~ fYT, for a sufficiently small T,
is a good choice.
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Gibbs Sampling

Gibbs Sampling solves the following problem.

e Input: a probability distribution p(y1,ys, ..., yn), where each y; € S.
|S|™ may be big, but |S| is assumed to be manageable.
e Output: a random y chosen from the probability distribution p.

Gibbs Sampling uses the technique of Monte Carlo Markov Chain simulation. The
idea is to set up a Markov Chain having p as its steady-state distribution, and then
simulate this Markov Chain for long enough to be confident that an approximation of
the steady-state has been attained. The final state of the simulation approximately
represents a sample from the steady-state distribution.

Let’s now define our Markov Chain. The set of states of our Markov Chain is S™.
Transitions exist only between states differing in at most one coordinate. For states
V=W Yns - Yn) and ¥ = (y1,. .., Y, -, Yn), We define the transition prob-

ability 7(¥ — ¥') = Tl et

We now show that the distribution p is a steady-state distribution of our Markov
Chain.

Recall that the definining property of a steady-state distribution 7 is
Tl =m

This property is known as global balance.
The stronger property

TWTY —y)=7)TE —3)

is known as detailed balance. We can see that detailed balance implies global balance
by summing both sides of the detailed balance condition over y':

Y rHTGF —¥)=> aF)TF —F)

m(¥) ZT(y —y) = Z T(¥Y)T(¥ — ¥)

Therefore, let’s just check whether p satisfies detailed balance. If y’ differs from y in
zero or more than one place, then detailed balance trivially holds (in the latter case,
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both sides of the detailed balance condition evaluate to zero). So, suppose that y’
differs from y in only one place, say coordinate m. The left-hand-side of the detailed

balance condition evaluates to p(¥)+ p() . The right-hand-side evaluates
nZyan(y17"'7ym7"'7yn)
p(¥)

to p(}_f”)% S SRTTT——T The two sides are equal, as desired.

Therefore, p is indeed the steady-state distribution of our Markov Chain.

Scoring profiles

Let’s investigate a probabilistic approach to scoring profiles, as an alternative to
simply using the consensus score.

We assume a background frequency P, for character x.

Let C,; denote the number of occurences of character x in the it" column of the
profile. We call this the profile matriz.

Then, in the background, the probability that a profile has profile matrix C' is given
by

-1

n ; ; ; pCt,i

prob(C) = H (C CLC G ) pfa,zpccc,ngcg,lpt :
i=0 a,i Ve Yo K

Since the profile corresponding to the actual motif locations should have small back-
ground probability, we assign

score(C) ~ 1/prob(C)

Now, log (n!) = ©(nlogn). Therefore,
score(C') ~ exp (Z Cyilog %)

The exponent is known as the entropy of the profile.

In summary, maximizing the entropy, rather than the consensus score, is a statistically
more adequate approach of finding motifs.
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Motif finding via Gibbs Sampling

Here is pseudocode for Motif Finding using the Gibbs Sampling technique.

1.
2.
3.

4.
D.

Randomly generate a start state yq, ..., yn.
Pick m uniformly at random from 1,..., n.

Replace y,, with y/, picked randomly from the distribution that assigns relative
weight 1/prob(C(y1, ..., Y, Yn)) to Y.
<do whatever with the sample>

Goto step 2.

Note that we are just doing a simulation of the Markov Chain defined by the Gibbs
Sampling technique.

Simulated Annealing

Annealing is a process by which glass is put into a highly durable state by a process
of slow cooling.

We can use the same idea here: to amplify the probability of sampling at the optimum

of a probability distribution p, we instead sample from p

YT where T — 0.

Figure 19.1 shows us a graph of a probability distribution p. The optimum occurs at
state 4, but there are other peaks that have significantly large height.
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Figure 19.1: Graph of a probability distribution p.

density




Lecture 19: November 16, 2004 19-5

Figures 19.2 and 19.3 show the graphs of the probability distributions p® and p*°
respectively. The height of the peak at state 4 has increased considerably with respect
to the heights of the other peaks.
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Figure 19.2: Graph of p®.
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Figure 19.3: Graph of p®.

How do we find the right T'? Here are two possible approaches: we can either drop T’
by a small amount after reaching steady-state, or we can drop 1" by a small amount
at each step.

Some questions that we didn’t answer

e For how long should we run the Markov Chain?

e How often can we sample?



