Section 10

Chi-squared goodness-of-fit test.

Example. Let us start with a Matlab example. Let us generate a vector X of 100 i.i.d.
uniform random variables on [0, 1] :

X=rand(100,1).

Parameters (100, 1) here mean that we generate a 100 x 1 matrix or uniform random variables.
Let us test if the vector X comes from distribution U|0, 1] using x? goodness-of-fit test:

[H,P,STATS]=chi2gof (X, ’cdf’,@(z)unifcdf(z,0,1),’edges’,0:0.2:1)
The output is

H=0, P=0.0953,
STATS = chi2stat: 7.9000
df: 4
edges: [0 0.2 0.4 0.6 0.8 1]
0: [17 16 24 29 14]
E: [20 20 20 20 20]

We accept null hypothesis Hy : P = U[0, 1] at the default level of significance a = 0.05 since
the p-value 0.0953 is greater than «. The meaning of other parameters will become clear
when we explain how this test works. Parameter ’cdf’ takes the handle @ to a fully specified
c.d.f. For example, to test if the data comes from N(3,5) we would use ’Q(z)normedf(z,3,5)’,
or to test Poisson distribution I1(4) we would use 'Q(z)poisscdf(z,4).’

It is important to note that when we use chi-squared test to test, for example, the
null hypothesis Hy : P = N(1,2), the alternative hypothesis is Hy : P # N(1,2). This is
different from the setting of ¢-tests where we would assume that the data comes from normal
distribution and test Hy: p=1 vs. Hqy:pu # 1.
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Pearson’s theorem.

Chi-squared goodness-of-fit test is based on a probabilistic result that we will prove in
this section.
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Figure 10.1:
Let us consider r boxes Bi, ..., B, and throw n balls Xy, ..., X, into these boxes inde-

pendently of each other with probabilities
]P)(XZ c Bl) =P1y... ,P(XZ c Br) = Dr,
so that

p+...+p. =1
Let v; be a number of balls in the jth box:

v; = #{balls X1,..., X, in the box B;} = Y " I(X, € By).

=1

On average, the number of balls in the jth box will be np; since

Ev; =» EI(X; € B;) = Y P(X, € B;) = np;.

=1 =1

We can expect that a random variable v; should be close to np;. For example, we can use
a Central Limit Theorem to describe precisely how close v; is to np;. The next result tells
us how we can describe the closeness of v; to np; simultaneously for all boxes j < r. The
main difficulty in this Thorem comes from the fact that random variables v; for j < r are
not independent because the total number of balls is fixed

v+ ...+, =n.

If we know the counts in n — 1 boxes we automatically know the count in the last box.
Theorem.(Pearson) We have that the random variable

T ()2
Z (v . ﬁpj) _d X?—l
=1 Pj

converges in distribution to x2_,-distribution with (r — 1) degrees of freedom.

63



Proof. Let us fix a box B;. The random variables
I(X; € Bj),...,I(Xn € Bj)

that indicate whether each observation X; is in the box B; or not are i.i.d. with Bernoulli
distribution B(p;) with probability of success

E[(Xl S Bj) == ]P(Xl S Bj) =Dj
and variance
Var(I(X; € B;)) = p;(1—pj).
Therefore, by Central Limit Theorem the random variable
vi—np; Y I(Xi € Bj) —np;
np;(1 = p;) np;(1 = p;)
Yo I(X; € Bj) —nE

= —4 N(0,1
vnVar (0.1)

converges in distribution to N(0,1). Therefore, the random variable

YiZ P a4 /7 —
R — —p;iN(0,1) = N(0,1 — p,
Ty VITRNO) = NO1-p)

converges to normal distribution with variance 1 — p;. Let us be a little informal and simply
say that
Vi —np;
npj
where random variable Z; ~ N (0,1 — p;).

We know that each Z; has distribution N (0,1 —p;) but, unfortunately, this does not tell
us what the distribution of the sum Z]2 will be, because as we mentioned above r.v.s v;
are not independent and their correlation structure will play an important role. To compute
the covariance between Z; and Z; let us first compute the covariance between

vi—mpi . Vj—np;
and —Z J

np; \/ P

which is equal to

Vi — npj Vj — Np; 1 9
E = Ev,v; — Evynp; — Evjnp; +n’pip;
T D o ij( iV inPj 5 1tPi ;)
1 1

(El/i v — nzpipj) .

= (Ev,v; — npinp; — npjnp; + n2pipj) =

To compute Ev,;v; we will use the fact that one ball cannot be inside two different boxes
simultaneously which means that

[(X, € B)I(X, € B;) = 0. (10.0.1)
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Therefore,

By, = E(Z I(X; € BZ-)) (ZI(XN c Bj)> =EY I(X; € B)I(Xy € By)
=1 =1 Ll
= E) I(X;€ B)I(Xy € B;)+E > _I(X; € B)I(Xy € B))
= P

this equals t‘(,) 0 by (10.0.1)
= n(n—1EI(X; € Bj)EI(Xy € B;) = n(n— 1)p;p;.
Therefore, the covariance above is equal to

1
N\/DiPj

(n(n — Dpipj — n2pipj> = —/DiD;

To summarize, we showed that the random variable
PR gPA
: np; —
7j=1 J 7j=1
where normal random variables 71, ..., Z, satisfy

EZ}? = 1 — p; and covariance EZ;Z; = —/pip;-

To prove the Theorem it remains to show that this covariance structure of the sequence of
(Z;) implies that their sum of squares has y2_,-distribution. To show this we will find a
different representation for > Z2.

Let g1,..., g, beii.d. standard normal random variables. Consider two vectors

g:(glu"'7g7“)T a“ndp:(\/p_la"'?\/p_T)T

and consider a vector g — (g - p)p, where g - p = g1/P1 + ... + gr/Dr is a scalar product of
g and p. We will first prove that

g — (g - p)p has the same joint distribution as (Z1,...,Z,). (10.0.2)

To show this let us consider two coordinates of the vector g — (g - p)p :

" 9= an/y/pi and ™ g; = g/BiyD;
=1 =1

and compute their covariance:

E(g— > av/mivmi) (95— D an/mivis)
= —VPiB; VBB )PV = —2V/P; + VBB = /Pl
=1
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Similarly, it is easy to compute that

E(Q@ - i:gz\/ﬁ\/ﬁ)z =1l—p
=1

This proves (10.0.2), which provides us with another way to formulate the convergence,
namely, we have

Z(u) —~%lg —(g9-p)p|"
=1 VI
But this vector has a simple geometric interpretation. Since vector p is a unit vector:

r

PP =3 (VP =Y n=1.
=1

=1

vector V3 = {p - g)p is the projection of vector g on the line along p and, therefore, vector
Vo =g — {p g)p will be the projection of g onto the plane orthogonal to p, as shown in
figure 10.2.
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Figure 10.2: New coordinate system.

Let us consider a new orthonormal coordinate system with the first basis vector {first
axis) equal to p. In this new coordinate system vector g will have coordinates

g = .q)=Vg
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obtained from g by orthogonal transformation

V = (p7p27"'7p7‘)

that maps canonical basis into this new basis. But we proved in Lecure 4 that in that
case ¢/, ..., g. will also be i.i.d. standard normal. From figure 10.2 it is obvious that vector
Vo =g — (p- g)p in the new coordinate system has coordinates

(0,95, 9.)"
and, therefore,
Vo> =g — (p-g)pI> = (92)° +... + (9,)".

But this last sum, by definition, has x?_; distribution since g5, --,g. are ii.d. standard
normal. This finishes the proof of Theorem.

Chi-squared goodness-of-fit test for simple hypothesis.

Suppose that we observe an i.i.d. sample X;,..., X, of random variables that take a
finite number of values By, . .., B, with unknown probabilities p1, . . ., p,. Consider hypotheses

Hy: pi=pjforalli=1,... r,
H, : for some i,p; # p;.

If the null hypothesis Hj is true then by Pearson’s theorem
i npz d .2
T = E —
an Xr-1

where v; = #{X; : X; = B;} are the observed counts in each category. On the other hand,
if Hy holds then for some index ¢, p; # p and the statistics 7" will behave differently. If p; is
the true probability P(X; = B;) then by CLT

Vi — npi _d N(0,1—p;).
np;
If we rewrite
vi —np; v —np;+n(p; —pf) pz Vionp i 2

np; np; B \/ NG

then the first term converges to N (0, (1 — p;)p;/p;) and the second term diverges to plus or
minus oo because p; # p;. Therefore,

(v; — npf)?

o — +00
np;

which, obviously, implies that T" — +o00. Therefore, as sample size n increases the distri-
bution of 7" under null hypothesis Hy will approach y2_,-distribution and under alternative

hypothesis H; it will shift to +o00, as shown in figure 10.3.
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Figure 10.3: Behavior of T" under Hy and H;.

Therefore, we define the decision rule
5= H1 T S C
N Hy: T >c.
We choose the threshold ¢ from the condition that the error of type 1 is equal to the level of

significance « :
a =P8 # H)=P(T >c)~x;_(c,0)

since under the null hypothesis the distribution of 7" is approximated by x2_; distribution.
Therefore, we take ¢ such that o = x?_; (¢, 00). This test § is called the chi-squared goodness-

of-fit test.
O

Example. (Montana outlook poll.) In a 1992 poll 189 Montana residents were asked
(among other things) whether their personal financial status was worse, the same or better

than a year ago.
Worse Same Better Total
58 64 67 189

We want to test the hypothesis Hy that the underlying distribution is uniform, i.e. p; = py, =
ps = 1/3. Let us take level of significance o« = 0.05. Then the threshold ¢ in the chi-squared
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test

. H()I TSC
N H: T>c

is found from the condition that y% ,_,(c,00) = 0.05 which gives ¢ = 5.9. We compute
chi-squared statistic

(58 — 189/3)2 (64 — 189/3)2 (67 — 189/3)2

T —
189/3 189/3 189/3

= 0.666 < 5.9

which means that we accept H at the level of significance 0.05.

Goodness-of-fit for continuous distribution.

Let X1,...,X, be an i.i.d. sample from unknown distribution P and consider the fol-
lowing hypotheses:

Hli ]P)%]P)Q

for some particular, possibly continuous distribution Py. To apply the chi-squared test above
we will group the values of X's into a finite number of subsets. To do this, we will split a set
of all possible outcomes X into a finite number of intervals I, ..., I, as shown in figure 10.4.
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Figure 10.4: Discretizing continuous distribution.
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The null hypothesis Hy, of course, implies that for all intervals
P(X € I;) =Po(X € I;) = p).
Therefore, we can do chi-squared test for

Hy: P(X €l;)=p)forallj<r
Hi: otherwise.

Asking whether H| holds is, of course, a weaker question that asking if Hy holds, because H,
implies H|) but not the other way around. There are many distributions different from [P that
have the same probabilities of the intervals Iy, ..., I, as P. On the other hand, if we group
into more and more intervals, our discrete approximation of IP will get closer and closer to P,
so in some sense H|, will get "closer’ to Hy. However, we can not split into too many intervals
either, because the x2_,-distribution approximation for statistic 7" in Pearson’s theorem is
asymptotic. The rule of thumb is to group the data in such a way that the expected count
in each interval
np) =nPy(X € ;) >5

is at least 5. (Matlab, for example, will give a warning if this expected number will be less
than five in any interval.) One approach could be to split into intervals of equal probabilities
p? = 1/r and choose their number r so that

npy) = — > 5.

=S

Example. Let us go back to the example from Lecture 2. Let us generate 100 observa-
tions from Beta distribution B(5,2).

X=betarnd(5,2,100,1);
Let us fit normal distribution N(p,0?) to this data. The MLE /i and & are
mean(X) = 0.7421, std(X,1)=0.1392.

Note that 'std(X)’ in Matlab will produce the square root of unbiased estimator (n/n—1)52.
Let us test the hypothesis that the sample has this fitted normal distribution.

[H,P,STATS]= chi2gof (X, ’cdf’,@(z)normcdf (z,0.7421,0.1392))
outputs

H=1, P = 0.0041,
STATS = chi2stat: 20.7589
daf: 7
edges: [1x9 double]
0: [14 4 11 14 14 16 21 6]
E: [1x8 double]

Our hypothesis was rejected with p-value of 0.0041. Matlab split the real line into 8 intervals
of equal probabilities. Notice ’df: 7’ - the degrees of freedom r — 1 =8 —1=7.
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