
Section 10 

Chi-squared goodness-of-fit test. 

Example. Let us start with a Matlab example. Let us generate a vector X of 100 i.i.d. 
uniform random variables on [0, 1] : 

X=rand(100,1). 

Parameters (100, 1) here mean that we generate a 100×1 matrix or uniform random variables. 
Let us test if the vector X comes from distribution U [0, 1] using �2 goodness-of-fit test: 

[H,P,STATS]=chi2gof(X,’cdf’,@(z)unifcdf(z,0,1),’edges’,0:0.2:1) 

The output is 

H = 0, P = 0.0953, 
STATS = chi2stat: 7.9000 

df: 4 
edges: [0 0.2 0.4 0.6 0.8 1] 
O: [17 16 24 29 14] 
E: [20 20 20 20 20] 

We accept null hypothesis H0 : P = U [0, 1] at the default level of significance � = 0.05 since 
the p-value 0.0953 is greater than �. The meaning of other parameters will become clear 
when we explain how this test works. Parameter ’cdf’ takes the handle @ to a fully specified 
c.d.f. For example, to test if the data comes from N(3, 5) we would use ’@(z)normcdf(z,3,5)’, 
or to test Poisson distribution �(4) we would use ’@(z)poisscdf(z,4).’ 

It is important to note that when we use chi-squared test to test, for example, the 
null hypothesis H0 : P = N(1, 2), the alternative hypothesis is H0 : P = N(1, 2). This is ∞
different from the setting of t-tests where we would assume that the data comes from normal 
distribution and test H0 : µ = 1 vs. H0 : µ = 1.∞
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Pearson’s theorem. 
Chi-squared goodness-of-fit test is based on a probabilistic result that we will prove in 

this section. 

�1 �2 �r 

B1 B2 ... Br 

p1 p2 pr 

Figure 10.1: 

Let us consider r boxes B1, . . . , Br and throw n balls X1, . . . , Xn into these boxes inde­
pendently of each other with probabilities 

P(Xi ≥ B1) = p1, . . . , P(Xi ≥ Br) = pr, 

so that 
p1 + . . . + pr = 1. 

Let �j be a number of balls in the jth box: 

n 

�j = #{balls X1, . . . , Xn in the box Bj } = I(Xl ≥ Bj). 
l=1 

On average, the number of balls in the jth box will be npj since 

n n 

E�j = EI(Xl ≥ Bj ) = P(Xl ≥ Bj ) = npj . 
l=1 l=1 

We can expect that a random variable �j should be close to npj. For example, we can use 
a Central Limit Theorem to describe precisely how close �j is to npj . The next result tells 
us how we can describe the closeness of �j to npj simultaneously for all boxes j ≈ r. The 
main difficulty in this Thorem comes from the fact that random variables �j for j ≈ r are 
not independent because the total number of balls is fixed 

�1 + . . . + �r = n. 

If we know the counts in n − 1 boxes we automatically know the count in the last box. 
Theorem.(Pearson) We have that the random variable 

r 
(�j − npj)

2 
d �2 

npj 
� r−1 

j=1 

converges in distribution to �2 
r−1-distribution with (r − 1) degrees of freedom. 
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Proof. Let us fix a box Bj. The random variables 

I(X1 ≥ Bj ), . . . , I(Xn ≥ Bj ) 

that indicate whether each observation Xi is in the box Bj or not are i.i.d. with Bernoulli 
distribution B(pj) with probability of success 

EI(X1 ≥ Bj) = P(X1 ≥ Bj ) = pj 

and variance 
Var(I(X1 ≥ Bj )) = pj(1 − pj). 

Therefore, by Central Limit Theorem the random variable 

�j − npj 
�n I(Xl ≥ Bj ) − npjl=1 = 

npj (1 − pj) npj(1 − pj) 
�n 

= l=1 I(Xl ≥ Bj ) − nE d N(0, 1)≤
nVar 

�

converges in distribution to N(0, 1). Therefore, the random variable 

d 
��j − npj 

1 − pj N(0, 1) = N(0, 1 − pj )≤
npj 

�

converges to normal distribution with variance 1 − pj. Let us be a little informal and simply 
say that 

�j − npj ≤
npj 

� Zj 

where random variable Zj � N(0, 1 − pj). 
We know that each Zj has distribution N(0, 1 − pj) but, unfortunately, this does not tell 

us what the distribution of the sum 
� 

Zj 
2 will be, because as we mentioned above r.v.s �j 

are not independent and their correlation structure will play an important role. To compute 
the covariance between Zi and Zj let us first compute the covariance between 

�i − npi �j − npj ≤
npi 

and ≤
npj 

which is equal to 

�i − npj �j − npj 1 
E ≤

npi 
≤

npj 
= 

n
≤

pipj 
(E�i�j − E�inpj − E�j npi + n 2 pipj ) 

1 2 1 2 = 
n
≤

pipj 
(E�i�j − npinpj − npj npi + n pipj ) = 

n
≤

pipj 
(E�i�j − n pipj). 

To compute E�i�j we will use the fact that one ball cannot be inside two different boxes 
simultaneously which means that 

I(Xl ≥ Bi)I(Xl ≥ Bj) = 0. (10.0.1) 
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Therefore, 

n n�� �� � � � 
E�i�j = E I(Xl ≥ Bi) I(Xl� ≥ Bj ) = E I(Xl ≥ Bi)I(Xl� ≥ Bj) 

l=1 l�=1 l,l� 

= E I(Xl ≥ Bi)I(Xl� ≥ Bj )+E I(Xl ≥ Bi)I(Xl� ≥ Bj ) 
l=l� l=l� 

this equals to 0 by (10.0.1) 

= n(n − 1)EI(Xl ≥ Bj )EI(Xl� ≥ Bj) = n(n − 1)pipj. 

Therefore, the covariance above is equal to 

1 � �
2 

n
≤

pipj 
n(n − 1)pipj − n pipj = −≤

pipj . 

To summarize, we showed that the random variable 

r r � (�j − npj )
2 � 

Z2 

npj 
� j . 

j=1 j=1 

where normal random variables Z1, . . . , Zn satisfy 

EZ2 = 1 − pi and covariance EZiZj = −≤
pipj.i 

To prove the Theorem it remains to show that this covariance structure of the sequence of 
(Zi) implies that their sum of squares has �2 

r−1-distribution. To show this we will find a 
different representation for 

� 
Zi 

2 . 
Let g1, . . . , gr be i.i.d. standard normal random variables. Consider two vectors 

g = (g1, . . . , gr)
T and p = (

≤
p1, . . . , 

≤
pr)

T 

and consider a vector g − (g p)p, where g p = g1
≤

p1 + . . . + gr
≤

pr is a scalar product of · · 
g and p. We will first prove that 

g − (g p)p has the same joint distribution as (Z1, . . . , Zr). (10.0.2)· 

To show this let us consider two coordinates of the vector g − (g p)p :· 
r r 

ith : gi − 
� 

gl
≤

pl
≤

pi and jth : gj − 
� 

gl
≤

pl
≤

pj 

l=1 l=1 

and compute their covariance: 

r r


E 
� 
gi − 

� 
gl
≤

pl
≤

pi 

�� 
gj − 

� 
gl
≤

pl
≤

pj 

�


l=1 l=1

n


= −≤
pi
≤

pj −
≤

pj 
≤

pi + 
� 

pl
≤

pi
≤

pj = −2
≤

pipj + 
≤

pipj = −≤
pipj. 

l=1 
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Similarly, it is easy to compute that 

This proves (10.0.2), which provides us with another way to formulate the convergence, 
namely, we have 

But this vector has a simple geometric interpretation. Since vector p is a unit vector: 

vector Vl = (p . g ) p  is the projection of vector g on the line along p and, therefore, vector 
Vz = g - (p . g ) p  will be the projection of g onto the plane orthogonal to p, as shown in 
figure 10.2. 

Figure 10.2: New coordinate system, 

Let us consider a new orthonormal coordinate system with the first basis vector (first 
axis) equal t o p .  In this new coordinate system vector g will have coordinates 



obtained from g by orthogonal transformation 

V = (p, p2, . . . , pr) 

that maps canonical basis into this new basis. But we proved in Lecure 4 that in that 
case g1

� , . . . , gr
� will also be i.i.d. standard normal. From figure 10.2 it is obvious that vector 

V2 = g − (p g)p in the new coordinate system has coordinates · 

(0, g2
� , . . . , gr

� )T 

and, therefore, 
|V2|2 = |g − (p · g)p|2 = (g� )2 + . . . + (g� )2 .2 r

But this last sum, by definition, has �2 
r−1 distribution since g2

� , , g� are i.i.d. standard · · · r 

normal. This finishes the proof of Theorem. 

Chi-squared goodness-of-fit test for simple hypothesis. 
Suppose that we observe an i.i.d. sample X1, . . . , Xn of random variables that take a 

finite number of values B1, . . . , Br with unknown probabilities p1, . . . , pr. Consider hypotheses 

H0 : pi = p�i for all i = 1, . . . , r, 
H1 : for some i, pi = p�i .∞

If the null hypothesis H0 is true then by Pearson’s theorem 

r � (�i − np�)2 

T = 
np�

i �d �2 
r−1 

i=1 i 

where �i = #{Xj : Xj = Bi} are the observed counts in each category. On the other hand, 
if H1 holds then for some index i, pi = p�i and the statistics T will behave differently. If pi is∞
the true probability P(X1 = Bi) then by CLT 

�i ≤− 
np

np

i

i �d N(0, 1 − pi). 

If we rewrite 

�i − npi
�

= 
�i − npi + n(pi − pi

�)
= 

� 
pi �i − npi 

+ 
≤

n
pi − pi

�
≤

npi
� ≤

npi
� pi

� ≤
npi 

≤
pi
�

then the first term converges to N(0, (1 − pi)pi/p
�
i ) and the second term diverges to plus or 

minus because pi = pi
�. Therefore,→ ∞

(�i − np�)2 
i 

np�i 
� +→ 

which, obviously, implies that T . Therefore, as sample size n increases the distri­� +→
bution of T under null hypothesis H0 will approach �2 

r−1-distribution and under alternative 
hypothesis H1 it will shift to + , as shown in figure 10.3. →
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Figure 10.3: Behavior of T under H0 and H1. 

Therefore, we define the decision rule 

α = 
H1 : T ≈ c 
H2 : T > c. 

We choose the threshold c from the condition that the error of type 1 is equal to the level of 
significance � : 

� = P1(α =∞ H1) = P1(T > c) � �2 
r−1(c, →) 

since under the null hypothesis the distribution of T is approximated by �2 
r−1 distribution. 

Therefore, we take c such that � = �2 
r−1(c, ). This test α is called the chi-squared goodness­→

of-fit test. 

Example. (Montana outlook poll.) In a 1992 poll 189 Montana residents were asked 
(among other things) whether their personal financial status was worse, the same or better 
than a year ago. 

Worse Same Better Total 
58 64 67 189 

We want to test the hypothesis H0 that the underlying distribution is uniform, i.e. p1 = p2 = 
p3 = 1/3. Let us take level of significance � = 0.05. Then the threshold c in the chi-squared 
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test 

α = 
H0 : T ≈ c 
H1 : T > c 

is found from the condition that �2
3−1=2(c, ) = 0.05 which gives c = 5.9. We compute→

chi-squared statistic 

(58 − 189/3)2 (64 − 189/3)2 (67 − 189/3)2 

T = + + = 0.666 < 5.9 
189/3 189/3 189/3 

which means that we accept H0 at the level of significance 0.05. 

Goodness-of-fit for continuous distribution. 
Let X1, . . . , Xn be an i.i.d. sample from unknown distribution P and consider the fol­

lowing hypotheses: 
H0 : P = P0


H1 : P = P0
∞
for some particular, possibly continuous distribution P0. To apply the chi-squared test above 
we will group the values of Xs into a finite number of subsets. To do this, we will split a set 
of all possible outcomes X into a finite number of intervals I1, . . . , Ir as shown in figure 10.4. 
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p.d.f. of P0 

Figure 10.4: Discretizing continuous distribution. 
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The null hypothesis H0, of course, implies that for all intervals 

P(X ≥ Ij) = P0(X ≥ Ij ) = pj 
0 . 

Therefore, we can do chi-squared test for 

H0
� : P(X ≥ Ij) = pj 

0 for all j ≈ r 
H1

� : otherwise. 

Asking whether H0
� holds is, of course, a weaker question that asking if H0 holds, because H0 

implies H0
� but not the other way around. There are many distributions different from P that 

have the same probabilities of the intervals I1, . . . , Ir as P. On the other hand, if we group 
into more and more intervals, our discrete approximation of P will get closer and closer to P, 
so in some sense H0

� will get ’closer’ to H0. However, we can not split into too many intervals 
either, because the �2 

r−1-distribution approximation for statistic T in Pearson’s theorem is 
asymptotic. The rule of thumb is to group the data in such a way that the expected count 
in each interval 

npi 
0 = nP0(X ≥ Ii) ∼ 5 

is at least 5. (Matlab, for example, will give a warning if this expected number will be less 
than five in any interval.) One approach could be to split into intervals of equal probabilities 
pi 

0 = 1/r and choose their number r so that 

n 
npi 

0 = ∼ 5. 
r 

Example. Let us go back to the example from Lecture 2. Let us generate 100 observa­
tions from Beta distribution B(5, 2). 

X=betarnd(5,2,100,1); 

Let us fit normal distribution N(µ, ν2) to this data. The MLE µ̂ and ν̂ are 

mean(X) = 0.7421, std(X,1)=0.1392. 

Note that ’std(X)’ in Matlab will produce the square root of unbiased estimator (n/n−1)ν̂2 . 
Let us test the hypothesis that the sample has this fitted normal distribution. 

[H,P,STATS]= chi2gof(X,’cdf’,@(z)normcdf(z,0.7421,0.1392)) 

outputs 

H = 1, P = 0.0041, 
STATS = chi2stat: 20.7589 

df: 7 
edges: [1x9 double] 
O: [14 4 11 14 14 16 21 6] 
E: [1x8 double] 

Our hypothesis was rejected with p-value of 0.0041. Matlab split the real line into 8 intervals 
of equal probabilities. Notice ’df: 7’ - the degrees of freedom r − 1 = 8 − 1 = 7. 
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