
Section 11 

Goodness-of-fit for composite 
hypotheses. 

Example. Let us consider a Matlab example. Let us generate 50 observations from N(1, 2): 

X=normrnd(1,2,50,1); 

Then, running a chi-squared goodness-of-fit test ’chi2gof’ 

[H,P,STATS]= chi2gof(X) 

outputs 

H = 0, P = 0.8793, 
STATS = chi2stat: 0.6742 

df: 3 
edges: [-3.7292 -0.9249 0.0099 0.9447 1.8795 2.8142 5.6186] 
O: [8 7 8 8 9 10] 
E: [8.7743 7.0639 8.7464 8.8284 7.2645 9.3226] 

The test accepts the hypothesis that the data is normal. Notice, however, that something is 
different. Matlab grouped the data into 6 intervals, so chi-squared test from previous lecture 
should have r − 1 = 6 − 1 = 5 degrees of freedom, but we have ’df: 3’ ! The difference is 
that now our hypothesis is not that the data comes from a particular given distribution but 
that the data comes from a family of distributions which is called a composite hypothesis. 
Running 

[H,P,STATS]= chi2gof(X,’cdf’,@(z)normcdf(z,mean(X),std(X,1))) 

would test a simple hypothesis that the data comes from a particular normal distribution 
N(µ̂, χ̂2) and the output 

H = 0, P = 0.9838 
STATS = chi2stat: 0.6842 
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df: 5

edges: [-3.7292 -0.9249 0.0099 0.9447 1.8795 2.8142 5.6186]

O: [8 7 8 8 9 10] 
E: [8.6525 7.0995 8.8282 8.9127 7.3053 9.2017] 

has ’df: 5.’ However, we can not use this test because we estimate the parameters µ̂ and χ̂2 

of this distribution using the data so this is not a particular given distribution; in fact, this 
is the distribution that fits the data the best, so the T statistic in Pearson’s theorem will 
behave differently. 

Let us start with a discrete case when a random variable takes a finite number of values 
B1, . . . , Br with probabilities 

p1 = P(X = B1), . . . , pr = P(X = Br). 

We would like to test a hypothesis that this distribution comes from a family of distributions 
{P� : ν → �}. In other words, if we denote 

pj(ν) = P�(X = Bj ), 

we want to test 
H0 : pj = pj (ν) for all j � r for some ν �→
H1 : otherwise. 

If we wanted to test H0 for one particular fixed ν we could use the statistic 

r � (�j − npj (ν))
2 

T = , 
npj (ν)j=1 

and use a simple chi-squared goodness-of-fit test. The situation now is more complicated 
because we want to test if pj = pj(ν), j � r at least for some ν � which means that we →
have many candidates for ν. One way to approach this problem is as follows. 

(Step 1) Assuming that hypothesis H0 holds, i.e. P = P� for some ν �, we can find an →
estimate ν� of this unknown ν and then 

(Step 2) try to test if, indeed, the distribution P is equal to P�� by using the statistics 

r � (�j − npj (ν
�))2 

T = 
npj(ν�)j=1 

in chi-squared goodness-of-fit test. 
This approach looks natural, the only question is what estimate ν� to use and how the 

fact that ν� also depends on the data will affect the convergence of T. It turns out that if we 
let ν� be the maximum likelihood estimate, i.e. ν that maximizes the likelihood function 

�(ν) = p1(ν)
�1 . . . pr(ν)

�r 
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then the statistic

r 

T =
(�j − npj (ν

�))2 
d ϕ2	 (11.0.1) 

npj(ν�) 
� r−s−1 

j=1 

converges to ϕ2 
r−s−1 distribution with r − s − 1 degrees of freedom, where s is the dimension 

of the parameter set �. Of course, here we assume that s � r − 2 so that we have at least 
one degree of freedom. Very informally, by dimension we understand the number of free 
parameters that describe the set 

(p1(ν), . . . , pr(ν)) : ν � .→ 

Then the decision rule will be 

α = 
H1 : T � c 
H2 : T > c 

where the threshold c is determined from the condition 

P(α ≤ |H0) = P(T > c| (c, +≈) = �= H0 H0) � ϕ2 
r−s−1

where � [0, 1] is the level of sidnificance. → 

Example 1. Suppose that a gene has two possible alleles A1 and A2 and the combina­
tions of these alleles define three genotypes A1A1, A1A2 and A2A2. We want to test a theory 
that 

Probability to pass A1 to a child = ν 
Probability to pass A2 to a child = 1 − ν 

and that the probabilities of genotypes are given by 

p1(ν) = P(A1A1) = ν2


p2(ν) = P(A1A2) = 2ν(1 − ν) (11.0.2)


p3(ν) = P(A2A2) = (1 − ν)2 .


Suppose that given a random sample X1, . . . , Xn from the population the counts of each 
genotype are �1, �2 and �3. To test the theory we want to test the hypothesis 

H0 : p1 = p1(ν), p2 = p2(ν), p3 = p3(ν) for some ν [0, 1]→
H1 : otherwise. 

First of all, the dimension of the parameter set is s = 1 since the distributions are determined 
by one parameter ν. To find the MLE ν� we have to maximize the likelihood function 

p1(ν)
�1 p2(ν)

�2 p3(ν)
�3 

or, equivalently, maximize the log-likelihood 

log p1(ν)
�1 p2(ν)

�2 p3(ν)
�3	 = �1 log p1(ν) + �2 log p2(ν) + �3 log p3(ν) 

= �1 log ν2 + �2 log 2ν(1 − ν) + �3 log(1 − ν)2 . 
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If we compute the critical point by setting the derivative equal to 0, we get


2�1 + �2
ν� = . 

2n 

Therefore, under the null hypothesis H0 the statistic 

(�1 − np1(ν
�))2 (�2 − np2(ν

�))2 (�3 − np3(ν
�))2 

T = + + 
np1(ν�) np2(ν�) np3(ν�) 

�d ϕ2 = ϕ2 = ϕ2 
r−s−1 3−1−1 1 

converges to ϕ2
1-distribution with one degree of freedom. Therefore, in the decision rule 

α = 
H1 : T � c 
H2 : T > c 

threshold c is determined by the condition 

P(α =≤ H0|H0) � ϕ1
2(T > c) = �. 

For example, if � = 0.05 then c = 3.841. 

Example 2. A blood type O, A, B, AB is determined by a combination of two alleles 
out of A, B, O and allele O is dominated by A and B. Suppose that p, q and r = 1 − p − q 
are the population frequencies of alleles A, B and O correspondingly. If alleles are passed 
randomly from the parents then the probabilities of blood types will be 

Blood type Allele combinations Probabilities Counts 
O OO r2 �1 = 121 
A AA, AO p2 + 2pr �2 = 120 
B BB, BO q2 + 2pr �3 = 79 

AB AB 2pq �4 = 33 

We would like to test this theory based on the counts of each blood type in a random sample 
of 353 people. We have four groups and two free parameters p and q, so the chi-squared 
statistics T under the null hypotheses will have ϕ2

4−2−1 = ϕ2
1 distribution with one degree of 

freedom. First, we have to find the MLE of parameters p and q. The log likelihood is 

�1 log r 2 + �2 log(p 2 + 2pr) + �3 log(q 2 + 2qr) + �4 log(2pq)


= 2�1 log(1 − p − q) + �2 log(2p − p 2 − 2pq) + �3 log(2q − q 2 − 2pq) + �4 log(2pq).


Unfortunately, if we set the derivatives with respect to p and q equal to zero, we get a system 
of two equations that is hard to solve explicitly. So instead we can minimize log likelihood 
numerically to get the MLE p̂ = 0.247 and q̂ = 0.173. Plugging these into formulas of blood 
type probabilities we get the estimated probabilities and estimated counts in each group 

O A B AB 
p̂i 0.3364 0.3475 0.2306 0.0855 
np̂i 118.7492 122.6777 81.4050 30.1681 
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We can now compute chi-squared statistic T � 0.44 and the p-value ϕ2(T, ≈) = 0.5071. The1

data agrees very well with the above theory. 

We could also use a similar test when the distributions P�, ν � are not necessarily →
supported by a finite number of points B1, . . . , Br, for example, continuous distributions. In 
this case if we want to test the hypothesis 

H0 : P = P� for some ν �→ 

we can group the data into r intervals I1, . . . , Ir and test the hypothesis 

H0 : pj = pj(ν) = P�(X Ij) for all j � r for some ν. → 

For example, if we discretize normal distribution by grouping the data into intervals I1, . . . , Ir 

then the hypothesis will be 

H0
� : pj = N(µ, χ2)(Ij) for all j � r for some (�, χ2). 

There are two free parameters µ and χ2 that describe all these probabilities so in this case 
s = 2. Matlab function ’chi2gof’ tests for normality by grouping the data and computing 
statistic T in (11.0.1) - that is why it uses ϕ2 

r−s−1 distribution with 

r − s − 1 = r − 2 − 1 = r − 3 

degrees of freedom and, thus, ’df: 3’ in the example above. 
Example. Let us test if the data ’normtemp’ from normal body temperature dataset 

fits normal distribution. 

[H,P,STATS]= chi2gof(normtemp) 

gives 

H = 0, P = 0.0504 
STATS = chi2stat: 9.4682 

df: 4 
edges: [1x8 double] 
O: [13 12 29 27 35 10 4] 
E: [9.9068 16.9874 27.6222 31.1769 24.4270 13.2839 6.5958] 

and we accept null hypothesis at the default level of significance � = 0.05 since p-value 
0.0504 > � = 0.05. We have r = 7 groups and, therefore, r − s − 1 = 7 − 2 − 1 = 4 degrees 
of freedom. 

In the case when the distributions P� are continuous or, more generally, have infinite 
number of values that must be grouped in order to use chi-squared test (for example, normal 
or Poisson distribution), it can be a difficult numerical problem to maximize the “grouped“ 
likelihood function 

P�(I1)
�1 . . . P�(Ir)

�r � max � ν�.· · 
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It is tempting to use a usual non-grouped MLE ν̂ of ν instead of the above ν� because it is 
often easier to compute, in fact, for many distributions we know explicit formulas for these 
MLEs. However, if we use ν̂ in the statistic 

r � (�j − npj (ν̂))
2 

T = (11.0.3) 
npj (ν̂)j=1 

then it will no longer converge to ϕ2 
r−s−1 distribution. A famous result in [1] proves that 

typically this T will converge to a distribution ”in between” ϕ2 
r−s−1 and ϕ2 

r−1. Intuitively this 
is easy to understand because ν� specifically fits the grouped data �1, . . . , �r so the expected 
counts 

np1(ν
�), . . . , npr(ν

�) 

should be a better fit compared to the expected counts 

np1(ν̂), . . . , npr(ν̂). 

On the other hand, these last expected counts should be a better fit than simply using the 
true expected counts 

np1(ν0), . . . , npr(ν0) 

since the MLE ν̂ fits the data better than the true distribution. So typically we would expect 

r r r � (�j − npj (ν
�))2 � (�j − npj(ν̂))2 � (�j − npj(ν0))

2 

. 
npj (ν�) 

� 
npj (ν̂) 

� 
npj (ν0)j=1 j=1 j=1 

But the left hand side converges to ϕ2 
r−s−1 and the right hand side converges to ϕ2 

r−1. Thus, 
if the decision rule is based on the statistic (11.0.3): 

α = 
H1 : T � c 
H2 : T > c 

then the threshold c can be determined conservatively from the tail of ϕ2 
r−1 distribution since 

P(α =≤ H0|H0) = P(T > c) � ϕr
2 
−1(T > c) = �. 
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