Section 11

Goodness-of-fit for composite
hypotheses.

Example. Let us consider a Matlab example. Let us generate 50 observations from N (1, 2):
X=normrnd(1,2,50,1);

Then, running a chi-squared goodness-of-fit test 'chi2gof’

[H,P,STATS]= chi2gof (X)

outputs

H=0, P=0.8793,
STATS = chi2stat: 0.6742
df: 3
edges: [-3.7292 -0.9249 0.0099 0.9447 1.8795 2.8142 5.6186]
0: [87 8 89 10]
E: [8.7743 7.0639 8.7464 8.8284 7.2645 9.3226]

The test accepts the hypothesis that the data is normal. Notice, however, that something is
different. Matlab grouped the data into 6 intervals, so chi-squared test from previous lecture
should have r — 1 = 6 — 1 = 5 degrees of freedom, but we have 'df: 3’! The difference is
that now our hypothesis is not that the data comes from a particular given distribution but
that the data comes from a family of distributions which is called a composite hypothesis.
Running

[H,P,STATS]= chi2gof (X, ’cdf’,@(z)normcdf (z,mean(X),std(X,1)))

would test a simple hypothesis that the data comes from a particular normal distribution
N(j1,6%) and the output

H=0, P=0.9838
STATS =  chi2stat: 0.6842
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df: 5
edges: [-3.7292 -0.9249 0.0099 0.9447 1.8795 2.8142 5.6186]
0: [87 88 9 10]

E: [8.6525 7.0995 8.8282 8.9127 7.3053 9.2017]

has 'df: 5.” However, we can not use this test because we estimate the parameters i and &2
of this distribution using the data so this is not a particular given distribution; in fact, this
is the distribution that fits the data the best, so the T' statistic in Pearson’s theorem will
behave differently.

O

Let us start with a discrete case when a random variable takes a finite number of values
By, ..., B, with probabilities

p=P(X =B),...,p.=P(X = B,).

We would like to test a hypothesis that this distribution comes from a family of distributions
{Py : 0 € O}. In other words, if we denote

pj(0) = Pp(X = By),

we want to test
Hy: p; =p;(0) for all j <r for some § € ©

H, : otherwise.

If we wanted to test Hy for one particular fixed # we could use the statistic

T = Z )2,

np j

and use a simple chi-squared goodness-of-fit test. The situation now is more complicated
because we want to test if p; = p;(0),7 < r at least for some § € © which means that we
have many candidates for §. One way to approach this problem is as follows.

(Step 1) Assuming that hypothesis Hy holds, i.e. P = Py for some 6 € ©, we can find an
estimate #* of this unknown # and then

(Step 2) try to test if, indeed, the distribution P is equal to Py« by using the statistics
2
npj ")
T =

in chi-squared goodness-of-fit test.

This approach looks natural, the only question is what estimate 6* to use and how the
fact that 0* also depends on the data will affect the convergence of T. It turns out that if we
let 0* be the maximum likelihood estimate, i.e. 6 that maximizes the likelihood function

p(0) = p(0)" ... p(0)"
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then the statistic

—~ (v —1pi(0M)* 4 o
T = E 11.0.1
P np] 9* Xr—s—1 ( 0 )

converges to x2_, , distribution with r — s — 1 degrees of freedom, where s is the dimension
of the parameter set ©. Of course, here we assume that s < r — 2 so that we have at least
one degree of freedom. Very informally, by dimension we understand the number of free
parameters that describe the set

{on@),...0n(0) -0 €0},

Then the decision rule will be
5 = Hl T S C
N Hy: T>c

where the threshold ¢ is determined from the condition
P(6 # Ho|Ho) = P(T > c|Hy) = x>_,_ (¢, +0) =

where a € [0, 1] is the level of sidnificance.

Example 1. Suppose that a gene has two possible alleles A; and A; and the combina-
tions of these alleles define three genotypes A; A, A1 A> and A A>. We want to test a theory

that
Probability to pass A; to a child =6

Probability to pass As to a child =1 -6
and that the probabilities of genotypes are given by

pi(0) = P(AA) =67
pa(8) = PB(AyAy) = 26(1— ) (11.0.2)
p3(0) = P(A4) = (1-10)

Suppose that given a random sample Xi,..., X, from the population the counts of each
genotype are v, v5 and v3. To test the theory we want to test the hypothesis

Hy: p1=pi(0), p2 = p2(0), ps = p3(0) for some 6 € [0, 1]
H,: otherwise.

First of all, the dimension of the parameter set is s = 1 since the distributions are determined
by one parameter 6. To find the MLE 6* we have to maximize the likelihood function

p1(0)"p2(0)ps(0)”

or, equivalently, maximize the log-likelihood

logp1(0)"p2(0)?p3(0)” = wv1logpi(0) + 15 log pa(0) + v5log p3(0)
= v1log 6% + 1nlog20(1 — 0) + vzlog(1 — 6)2
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If we compute the critical point by setting the derivative equal to 0, we get

2U1 + s
0* = .
2n
Therefore, under the null hypothesis H, the statistic
(1 = np(67))° n (v2 = npa(67))° n (v3 — nps(67))?
np: (6*) nps(6*) nps(6*)
d

2 2 2
7 Xp—s—1 7 X3-1-1 = X1

T =

converges to y?-distribution with one degree of freedom. Therefore, in the decision rule

5 = Hli TSC
N Hy: T>c

threshold ¢ is determined by the condition
P(6 # Ho|Ho) = xi(T > ¢) = a.

For example, if o = 0.05 then ¢ = 3.841.
O
Example 2. A blood type O, A, B, AB is determined by a combination of two alleles
out of A, B,O and allele O is dominated by A and B. Suppose that p,gand r=1—p —gq
are the population frequencies of alleles A, B and O correspondingly. If alleles are passed
randomly from the parents then the probabilities of blood types will be

Blood type Allele combinations Probabilities Counts

@) 00 r? v =121
A AA, AO p?+2pr vy =120
B BB, BO q + 2pr v3 =179
AB AB 2pq vy =33

We would like to test this theory based on the counts of each blood type in a random sample
of 353 people. We have four groups and two free parameters p and ¢, so the chi-squared
statistics 7" under the null hypotheses will have x% , | = x? distribution with one degree of
freedom. First, we have to find the MLE of parameters p and ¢. The log likelihood is

vy log 72 + vy log(p2 + 2pr) + v3 log(q2 + 2qr) + v4log(2pq)
=2 log(1 —p — q) + vy log(2p — p* — 2pq) + v3log(2q — ¢* — 2pq) + v4log(2pq).

Unfortunately, if we set the derivatives with respect to p and ¢ equal to zero, we get a system
of two equations that is hard to solve explicitly. So instead we can minimize log likelihood
numerically to get the MLE p = 0.247 and ¢ = 0.173. Plugging these into formulas of blood
type probabilities we get the estimated probabilities and estimated counts in each group

O A B AB
p; 03364  0.3475  0.2306  0.0855
np; 118.7492 122.6777 81.4050 30.1681
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We can now compute chi-squared statistic 7' ~ 0.44 and the p-value x?(7T, 00) = 0.5071. The
data agrees very well with the above theory.
O
We could also use a similar test when the distributions Py, € © are not necessarily
supported by a finite number of points By, ..., B,, for example, continuous distributions. In
this case if we want to test the hypothesis

Hy : P =Py for some 0 € ©
we can group the data into r intervals Iy, ..., I, and test the hypothesis
Hy :pj =pj(0) =Pp(X € I;) for all j <r for some 6.

For example, if we discretize normal distribution by grouping the data into intervals I, ..., I,
then the hypothesis will be

H| :pj = N(u,0%)(I;) for all j <r for some (a, 0?).

There are two free parameters p and o2 that describe all these probabilities so in this case
s = 2. Matlab function ’'chi2gof’ tests for normality by grouping the data and computing
statistic 7' in (11.0.1) - that is why it uses x2_,_, distribution with

r—s—1=r—-2—-1=r-3

degrees of freedom and, thus, 'df: 3’ in the example above.

Example. Let us test if the data 'normtemp’ from normal body temperature dataset
fits normal distribution.

[H,P,STATS]= chi2gof (normtemp)
gives

H=20, P=0.0504
STATS = chi2stat: 9.4682
df: 4
edges: [1x8 double]
0: [13 12 29 27 35 10 4]
E: [9.9068 16.9874 27.6222 31.1769 24.4270 13.2839 6.5958]

and we accept null hypothesis at the default level of significance @ = 0.05 since p-value
0.0504 > o = 0.05. We have r = 7 groups and, therefore, r — s —1=7—2 — 1 = 4 degrees
of freedom.

O

In the case when the distributions Py are continuous or, more generally, have infinite
number of values that must be grouped in order to use chi-squared test (for example, normal
or Poisson distribution), it can be a difficult numerical problem to maximize the “grouped“
likelihood function

]P)g(fl)yl o ]P)g(]r)yr — In;lX — 0",
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It is tempting to use a usual non-grouped MLE 6 of 6 instead of the above 6* because it is
often easier to compute, in fact, for many distributions we know explicit formulas for these
MLEs. However, if we use 6 in the statistic

T=Y L T (11.0.3)
j=1 np;(6)

then it will no longer converge to x2 , ; distribution. A famous result in [1] proves that
typically this 7" will converge to a distribution ”in between” x2_, ; and x2_,. Intuitively this
is easy to understand because 0* specifically fits the grouped data vy, ..., 1, so the expected
counts

np1(0%), ..., np.(0")

should be a better fit compared to the expected counts

npi(9), ... np(0).

On the other hand, these last expected counts should be a better fit than simply using the
true expected counts

np1(0o), . .., npr(0o)
since the MLE 6 fits the data better than the true distribution. So typically we would expect

(v —npi(09)? s (= npi(0)® < (v — mpy(6h))?
Z( p;(97)) <Z( p;(0)) <Z( p;(60))"

= np;(0%) - = np;(0) - = np;(6o)

But the left hand side converges to x?_, ; and the right hand side converges to x2_;. Thus,
if the decision rule is based on the statistic (11.0.3):

5= Hll TSC
- Hy: T>c

then the threshold ¢ can be determined conservatively from the tail of x2_, distribution since

P(5 # Ho|Hy) = P(T > ¢) < v*_,(T > ¢) = .
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