
Lecture 2 

Maximum Likelihood Estimators. 

Matlab example. As a motivation, let us look at one Matlab example. Let us generate 
a random sample of size 100 from beta distribution Beta(5, 2). We will learn the definition 
of beta distribution later, at this point we only need to know that this isi a continuous 
distribution on the interval [0, 1]. This can be done by typing ’X=betarnd(5,2,100,1)’. Let us 
fit different distributions by using a distribution fitting tool ’dfittool’. We try to fit normal 
distribution and beta distribution to this sample and the results are displayed in figure 2.1. 
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Figure 2.1: Fitting a random sample of size 100 from Beta(5, 2). (a) Histogram of the data 
and p.d.f.s of fitted normal (solid line) and beta (dashed line) distributions; (b) Empirical 
c.d.f. and c.d.f.s of fitted normal and beta distributions. 

Besides the graphs, the distribution fitting tool outputs the following information: 

Distribution: Normal 
Log likelihood: 55.2571 
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Domain: -Inf < y < Inf 
Mean: 0.742119 
Variance: 0.0195845 

Parameter Estimate Std. Err. 
mu 0.742119 0.0139945 
sigma 0.139945 0.00997064 

Estimated covariance of parameter estimates: 
mu sigma 

mu 0.000195845 6.01523e-020 
sigma 6.01523e-020 9.94136e-005 

Distribution: Beta 
Log likelihood: 63.8445 
Domain: 0 < y < 1 
Mean: 0.741371 
Variance: 0.0184152 

Parameter Estimate Std. Err. 
a 6.97783 1.08827 
b 2.43424 0.378351 

Estimated covariance of parameter estimates: 
a b 

a 1.18433 0.370094 
b 0.370094 0.143149 

The value ’Log likelihood’ indicates that the tool uses the maximum likelihood estimators 
to fit the distribution, which will be the topic of the next few lectures. Notice the ’Parameter 
estimates’ - given the data ’dfittool’ estimates the unknown parameters of the distribution 
and then graphs the p.d.f. or c.d.f. corresponding to these parameters. 

Since the data was generated from beta distribution, it is not surprising that beta 
distribution fit seems better than normal distribution fit, which is particularly clear from 
figure 2.1 (b), that compares how estimated c.d.f. fits the empirical c.d.f. Empirical c.d.f. is 
defined as 

n
1 � 

Fn(x) = I(Xi � x) 
n 

i=1 

where I(Xn � x) is the indicator that Xi is � x. In other words, Fn(x) is the proportion of 
observations below level x. 

One can ask several questions about this example: 
1. How to estimate the unknown parameters of a distribution given the data from this 

distribution? 
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2. How good are these estimates, are they close to the actual ’true’ parameters? 

3. Does the data come from a particular type of distribution, for example, normal or 
beta distribution? 

In the next few lectures we will study the first two questions and we will assume that we 
know what type of distribution the sample comes from, so we only do not know the parameters 
of the distribution. In the context of the above example, we would be told that the data 
comes from beta distribution, but the parameters (5, 2) would be unknown. Of course, in 
general we might not know what kind of distribution the data comes from - we will study 
this type of questions later when we look at the so called goodness-of-fit hypotheses tests. 
In particular, we will see graphs like 2.1 (b) again when we study the Kolmogorov-Smirnov 
goodness-of-fit test. 

Example. We consider a dataset of various body measurements from [1] (dataset can be 
dowloaded from journal’s website), including weight, height, waist girth, abdomen girth, etc. 
First, we use Matlab fitting tool to fit weight and waist girth of men and women (separately) 
with lognormal distribution, see figure 2.2 (a) and (b). Wikipedia article about normal dis­
tribution gives a reference to a 1932 book ”Problems of Relative Growth” by Julian Huxley 
for the explanation why the sizes of full-grown animals are approximately log-normal. One 
short explanation is consistency between linear and volume dimensions - if linear dimensions 
are lognormal and volume dimensions are proportional to cube of linear dimensions then 
they also are lognormal. Assumption that sizes are normal would violate this consistency, 
since the cube of normal is not normal. We observe, hovewer, that the fit of women’s waist 
with lognormal is not very accurate. Later in the class we will learn several statistical tests 
to decide if the data comes from a certain distribution or a family of distributions, but here 
is a preview of what’s to come. Chi-squared goodness-of-fit test rejects the hypothesis that 
the distribution of logarithms of women’s waists is normal: 

[h,p,stats]=chi2gof(log_women_waist) 

h = 1, p = 5.2297e-004 
stats = chi2stat: 22.0027 

df: 5 
edges: [1x9 double] 
O: [21 44 67 60 28 18 12 10] 
E: [1x8 double] 

and so does Lilliefor’s test (adjusted Kolmogorov-Smirnov test): 

[h,p,stats]=lillietest(log_women_waist) 

h = 1, p = 0, stats = 0.0841. 

The same tests accept the hypotheses that other variables have lognormal distribution. Au­
thor’s in [1] suggest that we can fit women’s waist with Gamma distribution. Since Gamma 
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Figure 2.2: Fitting weight (upper left) and waist girth (upper right) with lognormal distribution. 
Lower left: fitting women’s waist with shifted Gamma and normal distributions. 

does not have a translation (shift) parameter, when we fit Gamma distribution we can either 
add to it a shift parameter or instead shift all data to start at zero. In figure 2.2 (c) we fit 
Gamma and, for the sake of illustration, normal distribution, to women’s waist sample. As 
we can see, Gamma fits the data better than lognormal and much better than normal. To 
find the parameters of fitted Gamma distribution we use Matlab ’gamfit’ function: 

param=gamfit(women_waist_shift) 

param = 2.8700 4.4960. 

Chi-squared goodness-of-fit test for a specific (fitted) Gamma distribution: 

[h,p,stats]=chi2gof(women_waist_shift,’cdf’,@(z)gamcdf(z,param(1),param(2))) 
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h = 0, p = 0.9289, stats = chi2stat: 2.4763, df: 7 

accepts the hypothesis that the sample has Gamma distribution �(2.87, 4.496). This test is 
not ’accurate’ in some sense, which will be explained later. One can also check that Gamma 
distribution fits well other variables - men’s waist girth, weight of men and weight of women. 

Let us consider a family of distributions P� indexed by a parameter (which could be a 
vector of parameters) ϕ that belongs to a set �. For example, we could consider a family of 
normal distributions N(�, α2) in which case the parameter would be ϕ = (�, α2) - the mean 
and variance of the distribution. Let f(X ϕ) be either a probability function (in case of|
discrete distribution) or a probability density function (continuous case) of the distribution 
P�. Suppose we are given an i.i.d. sample X1, . . . , Xn with unknown distribution P� from this 
family, i.e. parameter ϕ is unknown. A likelihood function is defined by 

�(ϕ) = f(X1|ϕ) × . . . × f(Xn|ϕ). 

We think of the sample X1, . . . , Xn as given numbers and we think of � as a function of 
the parameter ϕ only. The likelihood function has a clear interpretation. For example, if our 
distributions are discrete then the probability function 

f(x ϕ) = P�(X = x)|

is the probability to observe a point x and the likelihood function 

�(ϕ) = f(X1|ϕ) × . . . × f(Xn|ϕ) = P�(X1) × . . . × P�(Xn) = P�(X1, . . . , Xn) 

is the probability to observe the sample X1, . . . , Xn when the parameters of the distribution 
are equal to ϕ. In the continuous case the likelihood function �(ϕ) is the probability density 
function of the vector (X1, . . . , Xn). 

Definition: (Maximum Likelihood Estimators.) Suppose that there exists a parameter 
ϕ̂ that maximizes the likelihood function �(ϕ) on the set of possible parameters �, i.e. 

�(ϕ̂) = max �(ϕ). 

Then ϕ̂ is called the Maximum Likelihood Estimator (MLE). 
When finding the MLE it sometimes easier to maximize the log-likelihood function since 

�(ϕ) � maximize ≥ log �(ϕ) � maximize 

maximizing � is equivalent to maximizing log �. Log-likelihood function can be written as 

n 

log �(ϕ) = log f(Xi ϕ).|
i=1 

Let us give several examples of computing the MLE. 

11 



� 

Example 1. Bernoulli distribution B(p). 

X = {0, 1}, P(X = 1) = p, P(X = 0) = 1 − p, p ∞ [0, 1]. 

Probability function in this case is given by 

f(x p) = 
p, x = 1 

= p x(1 − p)1−x .|
1 − p, x = 0 

Likelihood function is 

�(p) = f(X1 p)f(X2 p) . . . f(Xn p)| | |
# of 1’s(1 − p)# of 0’s X1+...+Xn (1 − p)n−(X1+...+Xn)= p = p 

and the log-likelihood function is 

log �(p) = (X1 + . . . + Xn) log p + (n − (X1 + . . . + Xn)) log(1 − p). 

To maximize this over p ∞ [0, 1] let us find the critical point (log �(p))� = 0, 

1 
(X1 + . . . + Xn) 

p 
− (n − (X1 + . . . + Xn))

1 − p 
= 0. 

1 

Solving this for p gives, 
X1 + . . . + Xn ¯p = = X 

n 
¯and, therefore, the proportion of successes p̂ = X in the sample is the MLEstimator of the 

unknown true probability of success, which is a very natural and intuitive estimator. For 
example, by law of large numbers, we know that 

¯ = pX � EX1 

in probability (we will recall this definition in the next lecture), which means that our 
estimate will approximate the unknown parameter p well when we get more and more data. 

Remark. In each example, once we compute the estimate of parameters, we can try to 
prove directly, using the explicit form of the estimate, that it approximates well the unkown 
parameters, as we did in Example 1. However, in the next lecture we will describe in a general 
setting that MLE has ’good properties’. 

Example 2. Normal distribution N(�, α2). The p.d.f. of normal distribution is 

1 (X−�)2 

2�2f(X|(�, α2)) = ≤
2�α 

e− . 

and, therefore, likelihood function is 

n 

�(�, α2) = 
� 1 

e− (Xi−�)2 

.≤
2�α 

2�2 

i=1 
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and log-likelihood function is 

n 
1 (Xi − �)2 

2α2
log �(�, α2) = log ≤

2� 
− log α −


i=1 
n

1 1

= n log ≤

2� 
− n log α − (Xi − �)2 . 

2α2 

We want to maximize the log-likelihood with respect to −→ < � < → and α2 > 0. First, 
obviously, for any α we need to minimize 

�
(Xi − �)2 over �. The critical point condition is 

n n 

� 

i=1 

d

(Xi − �)2 = −2 (Xi − �) = 0 

d�

i=1 i=1 

¯and solving this for � we get that �̂ = X. We can plug this estimate in the log-likelihood 
and it remains to maximize 

n
1 1


X̄)2 n log ≤
2� 

− n log α − (Xi −
2α2 

i=1 

over α. The critical point condition reads, 

n 1

(Xi − X̄)2 = 0 −

α 
+ 

α3 

and solving this for α we obtain that the MLE of α2 is 

n
1


α̂2 X̄)2 = (Xi −
n 

.

i=1 

The normal distribution fit in figure 2.1 corresponds to these parameters (�̂, α̂2). 
Exercise. Generate a normal sample in Matlab and fit it with a normal distribution 

using ’dfittool’. Then plot a p.d.f. or c.d.f. corresponding to MLE above and compare this 
with ’dfittool’. 

Let us give one more example of MLE. 
Uniform distribution U [0, ϕ] on the interval [0, ϕ]. This distribution has p.d.f. 

1 , 0 � x � ϕ, 
otherwise. 

f(x ϕ) = |
0,


The likelihood function 

n 
1


�(ϕ) = 
i=1 

f(Xi|ϕ) = 

= 

ϕn 
I(X1, . . . , Xn ∞ [0, ϕ]) 

1 
ϕn 

I(max(X1, . . . , Xn) � ϕ). 
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PSfrag replacements

Here the indicator function I(A) equals to 1 if event A happens and 0 otherwise. What the 
indicator above means is that the likelihood will be equal to 0 if at least one of the factors is 
0 and this will happen if at least one observation Xi will fall outside of the ’allowed’ interval 
[0, ϕ]. Another way to say it is that the maximum among observations will exceed ϕ, i.e. 

�(ϕ) = 0 if ϕ < max(X1, . . . , Xn), 

and 
1 

�(ϕ) = if ϕ � max(X1, . . . , Xn). 
ϕn 

Therefore, looking at the figure 2.3 we see that ϕ̂ = max(X1, . . . , Xn) is the MLE. 
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Figure 2.3: MLE for the uniform distribution. 

Sometimes it is not so easy to find the maximum of the likelihood function as in the 
examples above and one might have to do it numerically. Also, MLE does not always exist. 
Here is an example: let us consider uniform distribution U [0, ϕ) and define the density by 

� 
1 , 0 � x < ϕ, 

f(x|ϕ) = 
0
� 
, otherwise. 

The difference is that we ’excluded’ the point ϕ by setting f(ϕ ϕ) = 0. Then the likelihood |
function is 

n � 1 
�(ϕ) = f(Xi ϕ) = I(max(X1, . . . , Xn) < ϕ)

ϕn
|

i=1 
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and the maximum at the point ϕ̂ = max(X1, . . . , Xn) is not achieved. Of course, this is an 
artificial example that shows that sometimes one needs to be careful. 
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