Lecture 4

Multivariate normal distribution and
multivariate CLT.

)T is a k x 1 random vector

We start with several simple observations. If X = (xy,...,x;

then its expectation is
EX = (Ezy,...,Ex)"

and its covariance matrix is
Cov(X) =E(X —EX)(X —EX)T.
Notice that a covariance matrix is always symmetric
Cov(X)T = Cov(X)
and nonnegative definite, i.e. for any k£ x 1 vector a,
a’Cov(X)a = Ea” (X — EX)(X —EX)Ta” = Ela" (X —EX)|*> > 0.

We will often use that for any vector X its squared length can be written as | X |* = X7 X. If
we multiply a random & x 1 vector X by a n x k matrix A then the covariance of Y = AX
is a n X n matrix

Cov(Y) = EA(X —EX)(X —EX)TAT = ACov(X)A”.

Multivariate normal distribution. Let us consider a k x 1 vector g = (g1, ..., gx)"
of i.i.d. standard normal random variables. The covariance of g is, obviously, a k x k identity
matrix, Cov(g) = I. Given a n X k matrix A, the covariance of Ag is a n X n matrix

Y := Cov(Ag) = AIAT = AAT.

Definition. The distribution of a vector Ag is called a (multivariate) normal distribution
with covariance ¥ and is denoted N(0,%).

One can also shift this disrtibution, the distribution of Ag + a is called a normal distri-
bution with mean a and covariance ¥ and is denoted N (a, X2). There is one potential problem
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with the above definition - we assume that the distribution depends only on covariance ma-
trix X and does not depend on the construction, i.e. the choice of g and a matrix A. For
example, if we take a m x 1 vector ¢’ of i.i.d. standard normal random variables and a n x m
matrix B then the covariance of B¢’ is a n X n matrix

Cov(Bg') = BB™.

It is possible that ¥ = AAT = BB so both constructions should give a normal distribution
N(0,Y). This is, indeed, true - the distribution of Ag and B¢’ is the same, so the definition
of normal distribution N(0,%) does not depend on the construction. It is not very difficult
to prove that Ag and Bg’ have the same distribution, but we will only show the simplest
case.

Invertible case. Suppose that A and B are both square n x n invertible matrices. In
this case, vectors Ag and Bg' have density which we will now compute. Since the density of

g is
[z eo(-5) = () oo (-5hr)
——exp|—=z; ) = |—=) exp(—=|z|7),
oy V2n P\ 2 P\72
for any set (2 € R™ we can write

P(Ag € Q) = P(g € A7'Q) = /Am(\/%)nexp<—%|x\2)dx.

Let us now make the change of variables y = Ax or x = A~1y. Then

(i) -5 g

Pdg € ) :/ Vo det(A)]

Q

But since

det(¥) = det(AAT) = det(A) det(A”) = det(A)?
we have | det(A)| = /det(X). Also
[A™y|* = (A7Ny) (ATly) =y (A1) ATy =y (AAT) Ty =y 5Ty,

Therefore, we get

P(Ag € Q) = /52(\/12_7)” delt(E) exp(—%yTZ_ly>dy.

This means that a vector Ag has the density

delt(Z) eXp(_%yTz_ly)

which depends only on ¥ and not on A. This means that Ag and Bg’ have the same distri-
butions.
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It is not difficult to show that in a general case the distribution of Ag depends only
on the covariance 3, but we will omit this here. Many times in these lectures whenever we
want to represent a normal distribution N (0, 3) constructively, we will find a matrix A (not
necessarily square) such that ¥ = AAT and use the fact that a vector Ag for i.i.d. vector g
has normal distribution N (0, X). One way to find such A is to take a matrix square-root of
Y. Since ¥ is a symmetric nonnegative definite matrix, its eigenvalue decomposition is

Y =QDQT

for an orthogonal matrix () and a diagonal matrix D with eigenvalues A\{,..., A, of ¥ on
the diagonal. In Matlab, [Q,D]=eig(Sigma);” will produce this decomposition. Then if D'/
represents a diagonal matrix with )\3 /2 on the diagonal then one can take

A=QDY?* or A=QDV2Q".

It is easy to check that in both cases AAT = QDQT = ¥. In Matlab QDY2Q" is given by
'sqrtm(Sigma)’. Let us take, for example, a vector X = QD'?g for i.i.d. standard normal
vector g which by definition has normal distribution N(0,X). If ¢y, ..., g, are the column
vectors of () then

X = QD1/2g = (A}ﬂgl)ql + ...+ ()\i/zgn)qn.

Therefore, in the orthonormal coordinate basis ¢1,...,q, a random vector X has coordi-
nates )\}/ zgl, ey A 2gn. These coordinates are independent with normal distributions with
variances Aq, ..., A, correspondingly. When det > = 0, i.e. X is not invertible, some of its
eigenvalues will be zero, say, A\yr1 = ... = A, = 0. Then the random vector will be concen-
trated on the subspace spanned by vectors ¢y, . . ., ¢ but it will not have density on the entire

space R™. On the subspace spanned by vectors ¢, ..., a vector X will have a density

2

flzy, ... xy) = H 2170\' exp(—;;;).

i=1

Linear transformation of a normal random vector.

Suppose that Y is a n x 1 random vector with normal distribution N (0, ¥). Then given
am x n matrix M, am x 1 vector MY will also have normal distribution N (0, MXMT). To
show this, find any matrix A and i.i.d. standard normal vector g such that Ag has normal
distribution N(0,3). Then, by definition, M(Ag) = (MA)g also has normal distribution
with covariance

(MAYMAT = MAATM™ = MYXM™.

Orthogonal transformation of an i.i.d. standard normal sample.

Throughout the lectures we will often use the following simple fact. Consider a vector
X = (Xy,...,X,)T of i.i.d. random variables with standard normal distribution N (0, 1). If
V' is an orthogonal n x n matrix then the vector Y := VX also consists of i.i.d. random
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variables Y7, ..., Y, with standard normal distribution. A matrix V' is orthogonal when one
of the following equivalent properties hold:

Lvt=vT
2. The rows of V form an orthonormal basis in R".
3. The columns of V' form an orthonormal basis in R".
4. For any x € R"™ we have |Vz| = |z|, i.e. V preserves the lengths of vectors.
Below we will use that | det(V)| = 1. Basically, orthogonal transformations represent linear

transformations that preserve distances between points, such as rotations and reflections.
The joint p.d.f of a vector X is given by

—adp o L el

|
f(x):f(xl,...,:vn)zll\/—2_ﬂe WD

where |z = 22 + ... + z2. To find the p.d.f. of a vector Y = VX, which is an linear
transformation of X, we can use the change of density formula from probability or the
change of variables formula from calculus as follows. For any set 2 C R",

PYeQ) = PVXeQ)=PX eV 'Q)
_ [Vl
[ e = [ s

where we made the change of variables y = V2. We know that |det(V)| = 1 and, since
|[V=1y| = |y|, we have

IV

(v2m) (v2m)"

F(Vly) = e W2 = f(y).

Therefore, we finally get that
P e ) = [ Sy
Q

which proves that a vector Y has the same joint p.d.f. as X.

Multivariate CLT.

We will state a multivariate Central Limit Theorem without a proof. Suppose that
X = (z1,...,2;)" is a random vector with covariance . We assumed that Ez? < oo. If
X4, Xs, ... is a sequence of i.i.d. copies of X then

1 n
S, =—Y (X; —EX;) =% N(0,X%),
\/ﬁ;( ) (0,%)

d

where convergence in distribution —¢ means that for any set 2 € R”,

lim P(S, € Q) =P(Y € Q)

for a random vector Y with normal distribution N (0, ).

26



