
Lecture 4 

Multivariate normal distribution and 
multivariate CLT. 

We start with several simple observations. If X = (x1, . . . , xk)
T is a k × 1 random vector 

then its expectation is 
EX = (Ex1, . . . , Exk)

T 

and its covariance matrix is 

Cov(X) = E(X − EX)(X − EX)T . 

Notice that a covariance matrix is always symmetric 

Cov(X)T = Cov(X) 

and nonnegative definite, i.e. for any k × 1 vector a, 

a T Cov(X)a = Ea T (X − EX)(X − EX)T a T = E|a T (X − EX)|2 � 0. 

We will often use that for any vector X its squared length can be written as |X|2 = XT X. If 
we multiply a random k × 1 vector X by a n × k matrix A then the covariance of Y = AX 
is a n × n matrix 

Cov(Y ) = EA(X − EX)(X − EX)T AT = ACov(X)AT . 

Multivariate normal distribution. Let us consider a k × 1 vector g = (g1, . . . , gk)
T 

of i.i.d. standard normal random variables. The covariance of g is, obviously, a k × k identity 
matrix, Cov(g) = I. Given a n × k matrix A, the covariance of Ag is a n × n matrix 

� := Cov(Ag) = AIAT = AAT . 

Definition. The distribution of a vector Ag is called a (multivariate) normal distribution 
with covariance � and is denoted N(0, �). 

One can also shift this disrtibution, the distribution of Ag + a is called a normal distri­
bution with mean a and covariance � and is denoted N(a, �). There is one potential problem 
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with the above definition - we assume that the distribution depends only on covariance ma­
trix � and does not depend on the construction, i.e. the choice of g and a matrix A. For 
example, if we take a m × 1 vector g→ of i.i.d. standard normal random variables and a n × m 
matrix B then the covariance of Bg→ is a n × n matrix 

Cov(Bg→) = BBT . 

It is possible that � = AAT = BBT so both constructions should give a normal distribution 
N(0, �). This is, indeed, true - the distribution of Ag and Bg → is the same, so the definition 
of normal distribution N(0, �) does not depend on the construction. It is not very difficult 
to prove that Ag and Bg→ have the same distribution, but we will only show the simplest 
case. 

Invertible case. Suppose that A and B are both square n × n invertible matrices. In 
this case, vectors Ag and Bg→ have density which we will now compute. Since the density of 
g is 

� 1 � 1 � � 1 �n � 1 �
2 2→

2� 
exp −

2 
xi = →

2� 
exp −

2
|x| , 

i�n 

for any set � ∞ Rn we can write 
� � 1 �n � 1 � 

P(Ag ∞ �) = P(g ∞ A−1�) = 
A−1� 

→
2� 

exp −
2
|x| 2 dx. 

Let us now make the change of variables y = Ax or x = A−1y. Then 
� � 1 �n � 1 � 1 

P(Ag ∞ �) = 
� 

→
2� 

exp −
2
|A−1 y|2

det(A)
dy. | | 

But since 
det(�) = det(AAT ) = det(A) det(AT ) = det(A)2 

we have det(A) = det(�). Also| | 

|A−1 y|2 = (A−1 y)T (A−1 y) = y T (AT )−1A−1 y = y T (AAT )−1 y = y T �−1 y. 

Therefore, we get 
� � 1 �n 1 � 1 � 

P(Ag ∞ �) = 
� 

→
2� det(�) 

exp −
2
y T �−1 y dy. 

This means that a vector Ag has the density 

1 � 1 � 
� exp 

det(�) 
−

2
y T �−1 y 

which depends only on � and not on A. This means that Ag and Bg → have the same distri­
butions. 
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It is not difficult to show that in a general case the distribution of Ag depends only 
on the covariance �, but we will omit this here. Many times in these lectures whenever we 
want to represent a normal distribution N(0, �) constructively, we will find a matrix A (not 
necessarily square) such that � = AAT and use the fact that a vector Ag for i.i.d. vector g 
has normal distribution N(0, �). One way to find such A is to take a matrix square-root of 
�. Since � is a symmetric nonnegative definite matrix, its eigenvalue decomposition is 

� = QDQT 

for an orthogonal matrix Q and a diagonal matrix D with eigenvalues �1, . . . , �n of � on 
the diagonal. In Matlab, ’[Q,D]=eig(Sigma);’ will produce this decomposition. Then if D1/2 

represents a diagonal matrix with �i 
1/2 

on the diagonal then one can take 

A = QD1/2 or A = QD1/2QT . 

It is easy to check that in both cases AAT = QDQT = �. In Matlab QD1/2QT is given by 
’sqrtm(Sigma)’. Let us take, for example, a vector X = QD1/2g for i.i.d. standard normal 
vector g which by definition has normal distribution N(0, �). If q1, . . . , qn are the column 
vectors of Q then 

X = QD1/2 g = (�
1
1 
/2 

g1)q1 + . . . + (�1
n
/2 gn)qn. 

Therefore, in the orthonormal coordinate basis q1, . . . , qn a random vector X has coordi­
nates �1

1/2 
g1, . . . , �n 

1/2 
gn. These coordinates are independent with normal distributions with 

variances �1, . . . , �n correspondingly. When det � = 0, i.e. � is not invertible, some of its 
eigenvalues will be zero, say, �k+1 = . . . = �n = 0. Then the random vector will be concen­
trated on the subspace spanned by vectors q1, . . . , qk but it will not have density on the entire 
space Rn . On the subspace spanned by vectors q1, . . . , qk a vector X will have a density 

k 2� 1 � xi 
� 

f(x1, . . . , xk) = exp .→
2��i 

−
2�ii=1 

Linear transformation of a normal random vector. 
Suppose that Y is a n × 1 random vector with normal distribution N(0, �). Then given 

a m × n matrix M, a m × 1 vector MY will also have normal distribution N(0, M�M T ). To 
show this, find any matrix A and i.i.d. standard normal vector g such that Ag has normal 
distribution N(0, �). Then, by definition, M(Ag) = (MA)g also has normal distribution 
with covariance 

(MA)(MA)T = MAAT MT = M�MT . 

Orthogonal transformation of an i.i.d. standard normal sample. 
Throughout the lectures we will often use the following simple fact. Consider a vector 

X = (X1, . . . , Xn)T of i.i.d. random variables with standard normal distribution N(0, 1). If 
V is an orthogonal n × n matrix then the vector Y := V X also consists of i.i.d. random 
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variables Y1, . . . , Yn with standard normal distribution. A matrix V is orthogonal when one 
of the following equivalent properties hold: 

1. V −1 = V T . 

2. The rows of V form an orthonormal basis in Rn . 
3. The columns of V form an orthonormal basis in Rn . 
4. For any x ∞ Rn we have |V x| = |x|, i.e. V preserves the lengths of vectors. 

Below we will use that det(V ) = 1. Basically, orthogonal transformations represent linear | |
transformations that preserve distances between points, such as rotations and reflections. 
The joint p.d.f of a vector X is given by 

n 

if(x) = f(x1, . . . , xn) = 
� 

→1

2�
e−x2/2 =

(
→

2

1 

�)n 
e−|x|2/2 , 

i=1 

where |x|2 = x1
2 + . . . + x2 

n. To find the p.d.f. of a vector Y = V X, which is an linear 
transformation of X, we can use the change of density formula from probability or the 
change of variables formula from calculus as follows. For any set � ≥ Rn , 

P(Y ∞ �) =	 P(V X ∞ �) = P(X ∞ V −1�) 
� � 

f(V −1y) 
= f(x)dx = dy. 

V −1� � det(V )| | 
where we made the change of variables y = V x. We know that det(V ) = 1 and, since 
|V −1y| = |y|, we have 

| | 

f(V −1 y) = 
(
→

2

1 

�)n 
e−|V −1y|2/2 =

(
→

2

1 

�)n 
e−|y|2/2 = f(y). 

Therefore, we finally get that 

P(Y ∞ �) = f(y)dy 

which proves that a vector Y has the same joint p.d.f. as X. 

Multivariate CLT. 
We will state a multivariate Central Limit Theorem without a proof. Suppose that 

X = (x1, . . . , xk)
T is a random vector with covariance �. We assumed that Exi 

2 < �. If 
X1, X2, . . . is a sequence of i.i.d. copies of X then 

n 

Sn := →1 
n 

� 
(Xi − EXi) � d N(0, �), 

i=1 

where convergence in distribution �d means that for any set � ∞ Rk , 

lim P(Sn ∞ �) = P(Y ∞ �) 
n�� 

for a random vector Y with normal distribution N(0, �). 
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