
Lecture 5 

Confidence intervals for parameters of 
normal distribution. 

Let us consider a Matlab example based on the dataset of body temperature measurements 
of 130 individuals from the article [1]. The dataset can be downloaded from the journal’s 
website. This dataset was derived from the article [2]. First of all, if we use ’dfittool’ to fit a 
normal distribution to this data we get a pretty good approximation, see figure 5.1. 
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Figure 5.1: Fitting a body temperature dataset. (a) Histogram of the data and p.d.f. of fitted 
normal distribution; (b) Empirical c.d.f. and c.d.f. of fitted normal distribution. 

The tool also outputs the following MLEstimates µ̂ and α̂ of parameters µ, α of normal 
distribution: 

Parameter Estimate Std. Err. 
mu 98.2492 0.0643044 
sigma 0.733183 0.0457347. 
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Also, if our dataset vector name is ’normtemp’ then using the matlab function ’normfit’ by 
typing ’[mu,sigma,muint,sigmaint]=normfit(normtemp)’ outputs the following: 

mu = 98.2492, sigma = 0.7332,

muint = [98.122, 98.376], sigmaint = [0.654, 0.835].


The last two intervals here are 95% confidence intervals for parameters µ and α. This means 
that not only we are able to estimate the parameters of normal distribution using MLE but 
also to garantee with confidence 95% that the ’true’ unknown parameters of the distribution 
belong to these confidence intervals. How this is done is the topic of this lecture. Notice 
that conventional ’normal’ temperature 98.6 does not fall into the estimated 95% confidence 
interval [98.122, 98.376]. 

Distribution of the estimates of parameters of normal distribution. 
Let us consider a sample


X1, . . . , Xn � N(µ, α2)


from normal distribution with mean µ and variance α2 . MLE gave us the following estimates 
of µ and α2 - µ̂ = X̄ and α̂2 = X̄2 − (X̄)2. The question is: how close are these estimates to 
actual values of the unknown parameters µ and α2? By LLN we know that these estimates 
converge to µ and α2 , 

X̄ � µ, X̄2 − (X̄)2 � α2 , n � →, 

but we will try to describe precisely how close X̄ and X̄2 − (X̄)2 are to µ and α2. We will 
start by studying the following question: 

What is the joint distribution of ( ¯ X̄2 − ( ¯ are i.i.d from N(0, 1)?X, X)2) when X1, . . . , Xn 

A similar question for a sample from a general normal distribution N(µ, α2) can be reduced 
to this one by renormalizing Zi = (Xi − µ)/α. We will need the following definition. 

Definition. If X1, . . . , Xn are i.i.d. standard normal then the distribution of 

X1
2 + . . . + Xn 

2 

is called the �2 
n-distribution (chi-squared distribution) with n degrees of freedom. 

We will find the p.d.f. of this distribution in the following lectures. At this point we only 
need to note that this distribution does not depend on any parameters besides degrees of 
freedom n and, therefore, could be tabulated even if we were not able to find the explicit 
formula for its p.d.f. Here is the main result that will allow us to construct confidence intervals 
for parameters of normal distribution as in the Matlab example above. 

¯Theorem. If X1, . . . , Xn are i.d.d. standard normal, then sample mean X and sample 
variance X̄2 − (X̄)2 are independent, 

¯ X2
≥

nX � N(0, 1) and n( ¯ − (X̄)2) � �n
2 
−1, 

¯ ¯i.e. 
≥

nX has standard normal distribution and n(X2 − (X̄)2) has �2 distribution with n−1 

(n − 1) degrees of freedom. 
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Proof. Consider a vector Y given by a specific orthogonal transformation of X:
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Here we choose a first row of the matrix V to be equal to 

⎟
 1 1
 ⎛

v1 = , . . . , ≥

n 
≥

n 

and let the remaining rows be any vectors such that the matrix V defines orthogonal trans­
formation. This can be done since the length of the first row vector v1 = 1, and we can | |
simply choose the rows v2, . . . , vn to be any orthogonal basis in the hyperplane orthogonal 
to vector v1. 

Let us discuss some properties of this particular transformation. First of all, we showed 
above that Y1, . . . , Yn are also i.i.d. standard normal. Because of the particular choice of the 
first row v1 in V, the first r.v. 

¯Y1 = ≥1 
n

X1 + . . . + ≥1 
n

Xn = 
≥

nX 

and, therefore, 
1

X̄ = Y1. (5.0.1)≥
n 

Next, n times sample variance can be written as 

⎟
 1 ⎛2 
n(X̄2 − (X̄)2) = X1

2 + . . . + Xn 
2 − ≥

n 
(X1 + . . . + Xn) 

= X1
2 + . . . + Xn 

2 − Y1
2 . 

The orthogonal transformation V preserves the length of X, i.e. Y = V X = X or| | | | | | 

Y1
2 + + Yn 

2 = X1
2 + + Xn 

2 · · · · · · 

and, therefore, we get 

n(X̄2 − (X̄)2) = Y 2 + . . . + Y 2 − Y 2 = Y 2 + . . . + Y 2 . (5.0.2)1 n 1 2 n 

Equations (5.0.1) and (5.0.2) show that sample mean and sample variance are independent 
¯since Y1 and (Y2, . . . , Yn) are independent, 

≥
nX = Y1 has standard normal distribution and 

n(X̄2 − (X̄)2) has �2 
n−1 distribution since Y2, . . . , Yn are independent standard normal. 

Let us write down the implications of this result for a general normal distribution:


X1, . . . , Xn � N(µ, α2). 
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In this case, we know that 

Z1 = 
X1 − µ

, , Zn = 
Xn − µ � N(0, 1)

α 
· · · 

α 

are independent standard normal. Theorem applied to Z1, . . . , Zn gives that 

n ≥
nZ̄ = 

≥
n 

1 � Xi − µ 
= 

≥
n(X̄ − µ) � N(0, 1) 

n α α 
i=1 

and 

n(Z̄2 − (Z̄)2) = n 
⎟ 

n 
1 �⎟Xi 

α 
− µ⎛2 

− 
⎟ 

n 
1 � Xi 

α 
− µ⎛2⎛ 

n
1 �⎟Xi − µ 1 � Xi − µ⎛2 

= n 
n α 

− 
n α 

i=1 

= n
X̄2 − (X̄)2 

� �n
2 
−1. α2 

We proved that MLE µ̂ = X̄ and α̂2 = X̄2 − (X̄)2 are independent and 

�
n(µ̂−µ) � N(0, 1), n�̂2 � �2 

� �2 n−1. 

Confidence intervals for parameters of normal distribution. 

We know that by LLN a sample mean µ̂ and sample variance α̂2 converge to mean µ 
and variance α2: 

µ̂ = X̄ � µ, α̂2 = X̄2 − (X̄)2 � α2 . 

In other words, these estimates are consistent. Based on the above description of the joint 
distribution of the estimates, we will give a precise quantitative description of how close µ̂ 
and α̂2 are to the unknown parameters µ and α2 . 

Let us start by giving a definition of a confidence interval in our usual setting when we 
observe a sample X1, . . . , Xn with distribution P�0 from a parametric family {P� : � ∞ �}, 
and �0 is unknown. 

Definition: Given a confidence level parameter � ∞ [0, 1], if there exist two statistics 

S1 = S1(X1, . . . , Xn) and S2 = S2(X1, . . . , Xn) 

such that probability 
P�0 (S1 � �0 � S2) = � ( or ∼ �) 

then we will call [S1, S2] a confidence interval for the unknown parameter �0 with the confi­
dence level �. 
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This definition means that we can garantee with probability/confidence � that our 
unknown parameter lies within the interval [S1, S2]. We will now show how in the case of a 
normal distribution N(µ, α2) we can construct confidence intervals for unknown µ and α2 . 
Let us recall that in the last lecture we proved that if 

X1, . . . , Xn are i.d.d. with distribution N(µ, α2) 

then 

A = 

≥
n(µ̂ − µ) � N(0, 1) and B = 

n

α

α̂
2

2 

� �2 
n−1α 

and the random variables A and B are independent. If we recall the definition of �2­
distribution, this means that we can represent A and B as 

A = Y1 and B = Y2
2 + . . . + Yn 

2 

for some Y1, . . . , Yn - i.d.d. standard normal. 

Figure 5.2: p.d.f. of �2 
n−1-distribution and �-confidence interval. 

First, let us consider p.d.f. of �2 
n−1 distribution (see figure 5.2) and choose points c1 and 

c2 so that the area in each tail is (1 − �)/2. Then the area between c1 and c2 is � which 
means that 
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Tails of �2 
n−1-distribution. 

P(c1 � B � c2) = �. 

Therefore, we can ’garantee’ with probability � that 

nα̂2 

c1 � 
α2 

� c2. 
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Solving this for α2 gives 
nα̂2 nα̂2 

c2 
� α2 � 

c1 
. 

This precisely means that the interval 

⎠nα̂2 nα̂2 � 
,


c2 c1


is the �-confidence interval for the unknown variance α2 . 
Next, let us construct the confidence interval for the mean µ. We will need the following 

definition. 

Definition. If Y0, Y1, . . . , Yn are i.i.d. standard normal then the distribution of the ran­
dom variable 

Y0 

1 (Y 2 + . . . + Y 2)
n 1 n 

is called (Student) tn-distribution with n degrees of freedom. 

We will find the p.d.f. of this distribution in the following lectures together with p.d.f. of 
�2-distribution and some others. At this point we only note that this distribution does not 
depend on any parameters besides degrees of freedom n and, therefore, it can be tabulated. 
Consider the following expression: 

A Y1 
= � 

1 
� 

1 
� tn−1 

n−1 B 
n−1 (Y2

2 + . . . + Yn 
2) 

which, by definition, has tn−1-distribution with n − 1 degrees of freedom. On the other hand, 

� 
A 
1 

= 
≥

n 
(µ̂ − 

α

µ)�
� 

n − 
1

1 
n

α

α̂
2

2 

= 

≥
n

α̂

− 1
(µ̂ − µ). 

B 
n−1 

If we now look at the p.d.f. of tn−1 distribution (see figure 5.3) and choose the constants 
−c and c so that the area in each tail is (1 − �)/2, (the constant is the same on each side 
because the distribution is symmetric) we get that with probability �, 

≥
n − 1

(µ̂ − µ) � c−c � 
α̂

and solving this for µ, we get the confidence interval 

α̂ α̂
µ̂ − c≥

n − 1 
� µ � µ̂ + c≥

n − 1 
. 

Example. (Textbook, Section 7.5, p. 411)) Consider a sample of size n = 10 from 
normal distribution with unknown parameters: 

0.86, 1.53, 1.57, 1.81, 0.99, 1.09, 1.29, 1.78, 1.29, 1.58. 
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Figure 5.3: p.d.f. of tn−1 distribution and confidence interval for µ. 

We compute the estimates 

µ̂ = X̄ = 1.379 and α̂2 = X̄2 − (X̄)2 = 0.0966. 

Let us choose confidence level � = 95% = 0.95. We have to find c1, c2 and c as explained 
above. Using the table for t9-distribution we need to find c such that 

t9(−→, c) = 0.975 

which gives us c = 2.262. To find c1 and c2 we have to use the �2
9-distribution table so that 

�2([0, c1]) = 0.025 ≤ c1 = 2.79

�2([0, c2]) = 0.975 ≤ c2 = 19.02.9

Plugging these into the formulas above, with probability 95% we can garantee that 

X̄ − c 
9

1
(X̄2 − (X̄)2) � µ � X̄ + c 

9

1
(X̄2 − (X̄)2) 

1.1446 � µ � 1.6134 

and with probability 95% we can garantee that 

n(X̄2 − (X̄)2) n(X̄2 − (X̄)2) 
c2 

� α2 � 
c1 

or 
0.0508 � α2 � 0.3579. 
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These confidence intervals may not look impressive but the sample size is very small here, 
n = 10. 
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