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Lecture 6 

Gamma distribution, �2-distribution,

Student t-distribution,

Fisher F -distribution.


Gamma distribution. Let us take two parameters � > 0 and � > 0. Gamma function 
�(�) is defined by 

�(�) = x �−1 e−xdx. 
0 

If we divide both sides by �(�) we get 
� � 1 

� � �� 

1 = x �−1 e−xdx = y �−1 e−�ydy 
0 0 

where we made a change of variables x = �y. Therefore, if we define 

� �� 
e−�x 

�(�) x
�−1 , x ∼ 0 

f(x|�, �) = 
0, x < 0 

then f(x �, �) will be a probability density function since it is nonnegative and it integrates |
to one. 

Definition. The distribution with p.d.f. f(x �, �) is called Gamma distribution with |
parameters � and � and it is denoted as �(�, �). 

Next, let us recall some properties of gamma function �(�). If we take � > 1 then using 
integration by parts we can write: 

�(�) = x �−1 e−xdx = x �−1d(−e−x) 
0 0 

= x �−1(−e−x) 
0 
− 

0 
(−e−x)(� − 1)x �−2dx 

= (� − 1) x(�−1)−1 e−xdx = (� − 1)�(� − 1). 
0 
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Since for � = 1 we have 

�(1) = e−xdx = 1 
0 

we can write 

�(2) = 1 1, �(3) = 2 1, �(4) = 3 2 1, �(5) = 4 3 2 1· · · · · · · 

and proceeding by induction we get that �(n) = (n − 1)! 
Let us compute the kth moment of gamma distribution. We have, 

� � �� �� � � 

EXk k �−1 e−�xdx = (�+k)−1 e−�xdx= x x x
0 0 

= 
�� �(� + k) 

� � ��+k 

x �+k−1 e−�xdx 
�(�) ��+k 

0 �(� + k) 

p.d.f. of �(� + k, �) integrates to 1 

�� �(� + k) �(� + k) (� + k − 1)�(� + k − 1) 
= = = 

�(�) ��+k �(�)�k �(�)�k 

=
(� + k − 1)(� + k − 2) . . . ��(�)

=
(� + k − 1) · · · �

. 
�(�)�k �k 

Therefore, the mean is 
EX = 

the second moment is 

EX2 (� + 1)� 
= 

�2 

and the variance 

(� + 1)� ���2 � 
Var(X) = EX2 − (EX)2 = 

�2 
− 

� 
= 

�2 
. 

Below we will need the following property of Gamma distribution. 
Lemma. If we have a sequence of independent random variables 

X1 � �(�1, �), . . . , Xn � �(�n, �) 

then X1 + . . . + Xn has distribution �(�1 + . . . + �n, �)

Proof. If X � �(�, �) then a moment generating function (m.g.f.) of X is


� � �� � � �� 

Ee tX = e tx x �−1 e−�xdx = x �−1 e−(�−t)xdx 
0 0 

= 
�� � � (� − t)� 

x �−1 e−(�−t)xdx . 
(� − t)� 

0 �(�) 
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The function in the last (underbraced) integral is a p.d.f. of gamma distribution �(�, � − t) 
and, therefore, it integrates to 1. We get, 

Ee tX = . 
� − t 

Moment generating function of the sum 
�n

i=1 Xi is 

n n n P

t 
Pn � 

tXi 
� 

tXi 
�� � ��i 

� � � �i 

Ee i=1 Xi = E e = Ee = = 
� − t � − t 

i=1 i=1 i=1 

and this is again a m.g.f. of Gamma distibution, which means that 
n n 

Xi � � �i, � . 
i=1 i=1 

∂2 
n-distribution. In the previous lecture we defined a ∂2 

n-distribution with n degrees 
of freedom as a distribution of the sum X1

2 + . . . + Xn
2 , where Xis are i.i.d. standard normal. 

We will now show that which ∂2 
n-distribution coincides with a gamma distribution �(n 

2 , 2
1 ), 

i.e. �n 1� 
∂2 

n = � , . 
2 2 

Consider a standard normal random variable X � N(0, 1). Let us compute the distribution 
of X2 . The c.d.f. of X2 is given by 

t
2P(X2 � x) = P(−≥

x � X � ≥
x) = 

� �x 

≥1

2α
e− 

2 

dt. 
−�

x 

The p.d.f. can be computed by taking a derivative d 
P(X � x) and as a result the p.d.f. of 

dx 
X2 is 

� �x 
t (−

fX2 (x) = 
d 

−�
x 

≥1

2α
e− 

2

2 

dt = ≥1

2α
e− (

�

2 
x)2 

(
≥

x)� − ≥1

2α
e− 

�

2 
x)2 

(−
≥

x)� 
dx 

1 1 1 
= e− x 

2 = x 
1
2 −1 e− x 

2 .≥
2α 

≥
x 

≥
2α 

We see that this is p.d.f. of Gamma Distribution �( 1
2 , 2

1 ), i.e. we proved that X2 � �(
2
1 , 

2
1 ). 

Using Lemma above proves that X1
2 + . . . + Xn 

2 � �(n 
2 , 2

1 ). 

Fisher F -distribution. Let us consider two independent random variables, 
�k 1� �m 1� 

= � , and = � , .X � ∂2 
k 2 2 

Y � ∂m 
2 

2 2 

Definition: Distribution of the random variable 

X/k
Z = 

Y/m 
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is called a Fisher distribution with degrees of freedom k and m, is denoted by Fk,m. 
First of all, let us notice that since X � ∂2 can be represented as X1

2 + . . . + X2 for i.i.d. k k 

standard normal X1, . . . , Xk, by law of large numbers, 

1 
(X1

2 + . . . + Xk 
2) � EX2 = 1 

k 1 

when k � →. This means that when k is large, the numerator X/k will ’concentrate’ near 
1. Similarly, when m gets large, the denominator Y/m will concentrate near 1. This means 
that when both k and m get large, the distribution Fk,m will concentrate near 1. 

Another property that is sometimes useful when using the tables of F -distribution is 
that � 1� 

Fk,m(c, ) = Fm,k 0, .→
c 

This is because 
� X/k � �Y/m 1� � 1� 

Fk,m(c, →) = P 
Y/m 

∼ c = P 
X/k 

� 
c 

= Fm,k 0,
c 

. 

Next we will compute the p.d.f. of Z � Fk,m. Let us first compute the p.d.f. of 

k X 
Z = . 

m Y 

The p.d.f. of X and Y are 

k 
2 )


m 
2(1 

2 (1 
2

)
 1
2

1
2

k 
2 y


m 
2
−1 e−−1 e− x and g(y) =
 yf(x) =
 x


�(k 
2 

�(m )
2)


correspondingly, where x ∼ 0 and y ∼ 0. To find the p.d.f of the ratio X/Y, let us first write 
its c.d.f. Since X and Y are always positive, their ratio is also positive and, therefore, for 
t ∼ 0 we can write: 

�X � � ��� ty � 
P 

Y 
� t = P(X � tY ) = 

0 0 
f(x)g(y)dx dy 

since f(x)g(y) is the joint density of X, Y. Since we integrate over the set {x � ty} the limits 
of integration for x vary from 0 to ty. 

Since p.d.f. is the derivative of c.d.f., the p.d.f. of the ratio X/Y can be computed as 
follows: 

d �X � d 
� � � ty � � 

dt 
P 

Y 
� t = 

dt 0 0 
f(x)g(y)dxdy = 

0 
f(ty)g(y)ydy 

k 
2 )


m 
2

� � (1 
2 (1 

2
)
 1

2
1
2

k 
2

m 
2

−1 e− −1ty e− yydy (ty)
=
 y

�(k 

2 

2

�(m )
2 

( k+m 

)
0 
k+m 

(1
2 ) 2 1

2
k 
2
−1 )−1 (t+1)y dye−t
=
 y


�(k )�(m )
2 2 0 

38 



The function in the underbraced integral almost looks like a p.d.f. of gamma distribution 
�(�, �) with parameters � = (k + m)/2 and � = 1/2, only the constant in front is missing. 
If we miltiply and divide by this constant, we will get that, 

� (1 k+m � � (1 k+m 

dt

d 
P 
�X

Y 
� t = 

�(k 
2 )

)�(m ) 
t 

k 
2 −1 

(1 (

�(

t + 1)) 

k+
2 
m ) 

2 0

2 (

�(

t + 1)) 
k+m ) 

y( k+
2 
m )−1 e− 1 (t+1)y dy 

2 2 
2 

k+m 

2 2 2 2 

2= 
�(k+

2 
m ) 

t 
k 
2 −1(1 + t) 

k+m 
, 

)�(m )�(k 
2 2 

since the p.d.f. integrates to 1. To summarize, we proved that the p.d.f. of (k/m)Z = X/Y 
is given by 

2fX/Y (t) = 
�(k+

2 
m ) 

t 
k 
2 −1(1 + t)− k+m 

. 
�(k )�(m )

2 2 

Since 
�X kt � � �kt � k 

P(Z � t) = P 
Y 

� 
m 

=≤ fZ (t) = 
�t 

P(Z � t) = fX/Y 
m m

, 

this proves that the p.d.f. of Fk,m-distribution is 

�(k+m ) k �kt � k 
2 −1� kt �− k+

2 
m 

fk,m(t) = 2 1 + . 
�(k )�(m ) m m m 

2 2 

k 
2= 

�(k+
2 
m ) 

kk/2 mm/2t 2 −1(m + kt)− k+m 
. 

�(k )�(m )
2 2 

Student tn-distribution. Let us recall that we defined tn-distibution as the distribution 
of a random variable 

X1
T = � 

n 
1 (Y1

2 + + Yn 
2)· · · 

if X1, Y1, . . . , Yn are i.i.d. standard normal. Let us compute the p.d.f. of T. First, we can 
write, 

� X2 � 
P(−t � T � t) = P(T 2 � t2) = P 

(Y 2 + 
1 

+ Y 2)/n 
� t2 . 

1 n· · · 
If fT (x) denotes the p.d.f. of T then the left hand side can be written as 

� t 

P(−t � T � t) = fT (x)dx. 
−t 

On the other hand, by definition, 

X2 
1 

(Y1
2 + . . . + Yn 

2)/n 

has Fisher F1,n-distribution and, therefore, the right hand side can be written as 

� t2 

f1,n(x)dx. 
0 
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We get that,

� t � t2 

fT (x)dx = f1,n(x)dx. 
−t 0 

Taking derivative of both side with respect to t gives 

fT (t) + fT (−t) = f1,n(t2)2t. 

But fT (t) = fT (−t) since the distribution of T is obviously symmetric, because the numerator 
X has symmetric distribution N(0, 1). This, finally, proves that 

�(n+1 ) 1 t2 

fT (t) = f1,n(t
2)t = 2 n+1 

�(
2
1 )�(n 

2 ) 
≥

n 
(1 + 

n 
)− 

2 . 
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