
Section 14 

Simple linear regression. 

Let us look at the ’cigarette’ dataset from [1] (available to download from journal’s website) 
and [2]. The cigarette dataset contains measurements of tar, nicotine, weight and carbon 
monoxide (CO) content for 25 brands of domestic cigarettes. We are going to try to predict 
CO as a function of tar and nicotine content. To visualize the data let us plot each of these 
variable against others, see figure 14.1. Since the variables seem to have a linear relationship 
we fit a least-squares line, which we will explain below, to fit the data using Matlab tool 
’polytool’. For example, if our vectors are ’nic’ for nicotine, ’tar’ for tar and ’carb’ for CO 
then, for example, using 

polytool(nic,carb,1) 

will produce figure 14.1 (a), etc. We can also perform statistical analysis of these fits, in a 
sense that will gradually be explained below, using Matlab ’regress’ function. For carbon 
monoxide vs. tar: 

[b,bint,r,rint,stats]=regress(carb,[ones(25,1),tar]); 

b =	 2.7433 bint = 1.3465 4.1400 
0.8010 0.6969 0.9051 

stats = 0.9168 253.3697 0.000 1.9508, 

for carbon monoxide vs. nicotine 

[b,bint,r,rint,stats]=regress(carb,[ones(25,1),nic]); 

b =	 1.6647 bint = -0.3908 3.7201 
12.3954 10.2147 14.5761 

stats = 0.8574 138.2659 0.000 3.3432 
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Figure 14.1: Least-squares line (solid line). (a) Carbon monoxide content (mg.) vs. nicotine content 
(mg.). (b) Carbon monoxide vs. tar content. (c) Tar content vs. nicotine content. 

and for nicotine vs. tar 

[b,bint,r,rint,stats]=regress(tar,[ones(25,1),nic]); 

b =	 -1.4805 bint = -2.8795 -0.0815 
15.6281 14.1439 17.1124 

stats = 0.9538 474.4314 0.000 1.5488 

The output of ’regress’ gives a vector ’b’ of parameters of a fitted least-squares line, 95% 
confidence intervals ’bint’ for these parameters, and ’stats’ contains in order: 

R2 statistic, F statistic, p-value of F statistic, MLE π̂2 of the error variance. 

All of these will be explained below. 
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Simple linear regression model. 

Suppose that we have a pair of variables (X, Y ) and a variable Y is a linear function of 
X plus random noise: 

Y = f(X) + χ = �0 + �1X + χ, 

where a random noise χ is assumed to have normal distribution N(0, π2). A variable X is 
called a predictor variable, Y - a response variable and a function f(x) = �0 + �1x - a linear 
regression function. 

Suppose that we are given a sequence of pairs (X1, Y1), . . . , (Xn, Yn) that are described 
by the above model: 

Yi = �0 + �1Xi + χi 

and χ1, . . . , χn are i.i.d. N(0, π2). We have three unknown parameters - �0, �1 and π2 - and we 
want to estimate them using a given sample. The points X1, . . . , Xn can be either random or 
non random, but from the point of view of estimating linear regression function the nature of 
Xs is in some sense irrelevant so we will think of them as fixed and non random and assume 
that the randomness comes from the noise variables χi. For a fixed Xi, the distribution of Yi 

is equal to N(f(Xi), π
2) with p.d.f. 

1 (y−f (Xi))
2 

≥
2απ 

e− 
2�2 

and the likelihood function of the sequence Y1, . . . , Yn is: 

n
⎠ 1 �n 

e− 
2�

1
2 

P

(Yi−f(Xi))
2 

= 
⎠ 1 �n 

e− 1 P

i
n 
=1(Yi−�0−�1Xi)

2 
.≥

2απ 
i=1 ≥

2απ 
2�2 

Let us find the maximum likelihood estimates of �0, �1 and π2 that maximize this likelihood 
function. First of all, it is obvious that for any π2 we need to minimize 

n 

L := 
� 

(Yi − �0 − �1Xi)
2 

i=1 

over �0, �1. The line that minimizes the sum of squares L is called the least-squares line. To 
find the critical points we write: 

n 
�L � 

��0 
= − 2(Yi − (�0 + �1Xi)) = 0 

i=1 
n

�L � 

��1 
= − 2(Yi − (�0 + �1Xi))Xi = 0 

i=1 

If we introduce the notations 

¯ 1 � 
¯ 1 � 

X̄2 
1 � 

X2 ¯ 1 � 
X = Xi, Y = Yi, = i , XY = XiYi 

n n n n 

then the critical point conditions can be rewritten as 

¯ ¯ ¯ X̄2 ¯�0 + �1X = Y and �0X + �1 = XY . 
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Solving for �0 and �1 we get the MLE 

¯ X̄ ¯
ˆ = ¯ X̄ and ˆ = 

XY − Y
.�0 Y − �̂1 �1 

X̄2 X̄2− 

These estimates are used to plot least-squares regression lines in figure 14.1. Finally, to find 
the MLE of π2 we maximize the likelihood over π2 and get: 

n 

π̂2 =
1 � 

(Yi − �̂0 − �̂1Xi)
2 . 

n 
i=1 

The differences ri = Yi − Ŷi between observed response variables Yi and the values predicted 
by the estimated regression line 

Ŷi = �̂0 + �̂1Xi 

are called the residuals. The R2 statistic in the examples above is defined as 

R2 = 1 − 

�

i
n 
=1(Yi − Ŷi)

2 

.�n 
i=1(Yi − Ȳ )2 

The numerator in the last sum is the sum of squares of the residuals and the numerator is 
the variance of Y and R2 is usually interpreted as the proportion of variability in the data 
explained by the linear model. The higher R2 the better our model explains the data. Next, 
we would like to do statistical inference about the linear model. 

1. Construct confidence intervals for parameters of the model �0, �1 and π2 . 
2. Construct prediction intervals for Y given any point X (dotted lines in figure 14.1). 

3. Test hypotheses about parameters of the model. For example, F -statistic in the output 
of Matlab function ’regress’ comes from a test of the hypothesis H0 : �0 = 0, �1 = 0 that the 
response Y is not ’correlated’ with a predictor variable X. 

In spirit all these problems are similar to statistical inference about parameters of normal 
distribution such as t-tests, F -tests, etc. so as a starting point we need to find a joint 
distribution of the estimates �̂0, �̂1 and π̂2 . 

To compute the joint distribution of �̂0 and �̂1 is very easy because they are linear 
combinations of Yis which have normal distributions and, as a result, �̂0 and �̂1 will have 
normal distributions. All we need to do is find their means, variances and covariance, which 
is a straightforward computation. However, we will obtain this as a part of a more general 
computation that will also give us joint distribution of all three estimates �̂0, �̂1 and π̂2 . Let 
us denote the sample variance of Xs by 

πx 
2 X̄2 − X̄2 = . 

Then we will prove the following: 
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�
 �
 �
 �


�
 �


�


�

�
 �

�

�
�
� 
�


� 

�


X̄2π2 π2 

1. �̂1 � N �1, 
⎠ ⎠
 ⎠ 1
 ⎠


,
 �̂0 � N π2 X2 ,
�0, +

n


= N �0,
nπ2 

x nπ2 
x nπ2 

x 

X̄π2 

Cov( �̂0, �̂1) = − . 
nπ2 

x 

2. π̂2 is independent of �̂0 and �̂1.

nπ̂2


3.
π2 

has ∂2 
n−2 distribution with n − 2 degrees of freedom. 

Remark. Line 1 means that ( �̂0, �̂1) have jointly normal distribution with mean (�0, �1) and 
covariance matrix 

π2 X2 −X̄
1 

� =
 .

nπx 

2 −X̄

Proof. Let us consider two vectors

⎠
 1 1


a1 = (a11, . . . , a1n) = , . . . , ≥
n 

≥
n 

and 
¯Xi − X 

a2 = (a21, . . . , a2n) where a2i = .

nπ2 

x 

It is easy to check that both vectors have length 1 and they are orthogonal to each other 
since their scalar product is 

n n ¯Xi − X1

= 0.
a1 a2 = a1ia2i = · ≥

n nπ2 
i=1 i=1 x 

Let us choose vectors a3, . . . , an so that a1, . . . , an is orthonormal basis and, as a result, the 
matrix
 ⎞ 

a11 an1· · · 
a12 an2· · · 
. . . . . . . . . 

a1n · · · ann 

⎜
⎜
⎜
⎝


A =


is orthogonal. Let us consider vectors 

Y = (Y1, . . . , Yn), µ = EY = (EY1, . . . , EYn) 

and 

Y � = (Y1
�, . . . , Y n

�) = 
Y − µ 

= 
⎠Y1 − EY1 

, . . . , 
Yn − EYn 

π π π 
so that the random variables Y1

�, . . . , Y n
� are i.i.d. standard normal. We proved before that if


we consider an orthogonal transformation of i.i.d. standard normal sequence: 

Z � = (Z1
� , . . . , Zn

� ) = Y �A 
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� � 

then Z1
� , . . . , Zn

� will also be i.i.d. standard normal. Since 

Z � = Y �A = 
⎠Y − µ� 

A = 
Y A − µA 

π π 

this implies that 
Y A = πZ � + µA. 

Let us define a vector 
Z = (Z1, . . . , Zn) = Y A = πZ � + µA. 

Each Zi is a linear combination of Yis and, therefore, it has a normal distribution. Since we 
made a specific choice of the first two columns of the matrix A we can write down explicitly 
the first two coordinates Z1 and Z2 of vector Z. We have, 

n	 n 

¯	 ¯Z1 = 
� 

ai1Yi = ≥1 
n 

� 
Yi = 

≥
nY = 

≥
n(�̂0 + �̂1X) 

i=1 i=1 

and the second coordinate 
n n ¯� � (Xi − X)Yi

Z2 = ai2Yi = �
nπ2 

i=1 i=1 x 
n ¯

= 
�

nπ2 
� (Xi − X)Yi 

= 
�

nπ2�̂1.x	 xnπ2 
i=1 x 

Solving these two equations for �̂0 and �̂1 we can express them in terms of Z1 and Z2 as 

¯
�̂1 =

1 
Z2 and �̂0 =

1 X
Z2.�

nπ2 
≥

n
Z1 − �

nπ2 
x	 x 

This easily implies claim 1. Next we will show how π̂2 can also be expressed in terms of Zis. 
n	 n 

nπ̂2 = 
� 

(Yi − �̂0 − �̂1Xi)
2 = 

�⎠ 
(Yi − Ȳ ) − �̂1(Xi − X̄) 

�2 
{since �̂0 = Ȳ − �̂1X̄}

i=1 i=1

n �n n


=	
� 

(Yi − Ȳ )2 − 2�̂1nπx 
2 i=1(Yi − 

nπ

Ȳ
2 

)(Xi − X̄) 
+�̂1

2 
� 

(Xi − X̄)2 

i=1 x i=1⎟ �� ⎛ 
�̂1 

n	 n 

=	
� 

(Yi − Ȳ )2 − �̂1
2nπx 

2 = 
� 

Yi 
2 − n(Ȳ )2 − �̂1

2 
nπx 

2 

⎟ �� ⎛ ⎟ �� ⎛
i=1	 i=1 

Z2 Z2 
1 2 

n	 n 

=	
� 

Yi 
2 − Z1

2 − Z2
2 = 

� 
Zi 

2 − Z1
2 − Z2

2 = Z2 + Zn
2 .3 + · · · 

i=1	 i=1 

In the last line we used the fact that Z = Y A is an orthogonal transformation of Y and 
since orthogonal transformation preserves the length of a vector we have, 

n n 

Zi 
2 = Yi 

2 . 
i=1 i=1 
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�


� � 

� � 

�

�


If we can show that Z3, . . . , Zn are i.i.d. with distribution N(0, π2) then 

nπ̂2 ⎠Z3 
�2 ⎠Zn 

�2 

π2 
= + . . . + � ∂n

2 
−2π π 

has ∂2-distribution with n − 2 degrees of freedom, because Zi/π � N(0, 1). Since we showed 
above that 

Z = µA + πZ � ≤ Zi = (µA)i + πZi
�, 

the fact that Z1
� , . . . , Zn

� are i.i.d. standard normal implies that Zis are independent of each 
other and Zi � N((µA)i, π

2). Let us compute the mean EZi = (µA)i: 

n n n 

(µA)i = EZi = E ajiYj = ajiEYj = aji(�0 + �1Xj ) 
j=1 j=1 j=1 

n 

¯ ¯= aji(�0 + �1X + �1(Xj − X)) 
j=1 

n n 

X̄) X̄).= (�0 + �1 aji + �1 aji(Xj −
j=1 j=1 

Since the matrix A is orthogonal its columns are orthogonal to each other. Let ai = (a1i, . . . , ani) 
be the vector in the ith column and let us consider i � 3. Then the fact that ai is orthogonal 
to the first column gives 

n n 
1


ai a1 = aj1aji = ≥
n

aji = 0 · 
j=1 j=1 

and the fact that ai is orthogonal to the second column gives 

n
1
 ¯(Xj − X)aji = 0.ai a2 = · 
nπ2 

x j=1 

This show that for i � 3 

n n � �

X̄) = 0 aji = 0 and aji(Xj −
j=1 j=1 

and this proves that EZi = 0 for i � 3 and Zi � N(0, π2) for i � 3. As we mentioned above 
this also proves that nπ̂2/π2 � ∂2 

n−2. 

Finally, π̂2 is independent of �̂0 and �̂1 because π̂2 can be written as a function of 
Z3, . . . , Zn and �̂0 and �̂1 can be written as functions of Z1 and Z2. 

Statistical inference in simple linear regression. Suppose now that we want to 
find the confidence intervals for unknown parameters of the model �0, �1 and π2 . This is 
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� � 

� 

� � 

� 

� 

� � 

� � 

straightforward and very similar to the confidence intervals for parameters of normal dis­
tribution. For example, using that nπ̂2/π2 � ∂n

2 
−2, if we find the constants c1 and c2 such 

that 

∂2 (0, c1) = 
1 − � 

and ∂2 (c2, +∼) = 
1 − � 

n−2 2 n−2 2


then with probability � we have c1 nπ̂2/π2 c2. Solving this for π2 we find the �

confidence interval: 

nπ̂2 nπ̂2 

. 
c2 

� π2 � 
c1 

Similarly, we find the � confidence interval for �1. Since 

� π2 nπ̂2 

(�̂1 − �1) 
nπx 

2 
� N(0, 1) and 

π2 
� ∂2 

n−2 

then 
nπ2 � 1 nπ̂2 

x(�̂1 − �1) 
π2 n − 2 π2 

� tn−2 

has Student tn−2-distribution with n − 2 degrees of freedom. Simplifying, we get 

x(�̂1 − �1)
(n − 2)π2 

� tn−2. (14.0.1)
π̂2 

Therefore, if we find c such that tn−2(−c, c) = � then with probability �: 

−c � (�̂1 − �1)
(n − 

π̂2 

2)π2 

� c x 

and solving for �1 we obtain the � confidence interval: 

π̂2 π̂2 

.�̂1 − c 
(n − 2)π2 

� �1 � �̂1 + c 
(n − 2)π2 

x x 

Similarly, to find the confidence interval for �0 we use that 

�
⎠ 
�̂0 − �0 

� 

�
� 

1 n

π

π̂
2

2 

= ( �̂0 − �0) 
�

� 
π̂2 ⎠ 

1 + 
X

π

¯

2

2 � 
� tn−2 (14.0.2) 

1 + X̄2 
π2 

n − 2 n − 2 x 
n n�2 

x 

and � confidence interval for �0 is: 

π̂2 ⎠ X̄2 � π̂2 ⎠ X̄2 � 
�̂0 − c

n − 2 
1 + 

x 

� �0 � �̂0 + c
n − 2 

1 + 
x 

. 
π2 π2 

We can now construct various t-tests based on t-statistics (14.0.1) and (14.0.2). 
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Linear combinations of parameters. More generally, let us compute the distribution 
of a linear combination 

c0�̂0 + c1�̂1 

of the estimates. This will allow us to construct confidence intervals and t-tests for linear 
combinations of parameters c0�0 + c1�1. Clear, the distribution of this linear combination 
will be normal with mean 

Var(c0�̂0 + c1�̂1) = E(c0�̂0 + c1�̂1 − c0�0 − c1�1)
2 = E(c0(�̂0 − �0) + c1(�̂1 − �1))

2 

ˆ ˆ( � � ) = � �E + +c c c c .0 0 1 1 0 0 1 1

We compute its variance: 

ˆ ˆ ˆ ˆ2 2 2 2(� � ) (� � ) +2 (� � )(� � )E E E+− − − −= c c c c0 0 1 1 0 1 0 0 1 10 1 
⎟ �� ⎛ ⎟ �� ⎛ ⎟ �� ⎛ 

ˆ ˆ covariance variance of variance of � �1 0 

¯ ¯2 2 2�⎠ X π1 Xπ2 2 2π 2+ + −= c c c c0 10 1 
x xnπ2 nπ2 nπ2 

xn


2nπx 

⎠c0
2 (c0X̄ − c1)

2 � 
= π2 + . 

n 

This proves that 

2nπx 

�̂0 + c1�̂1 � N 
⎠ 
c0�0 + c1�1, π

2
⎠c0

2 

+
(c0X̄ − c1)

2 �� 
(14.0.3)
c0 .


n


Using (c0, c1) = (1, 0) or (0, 1), will give the distributions of �̂0 and �̂1. 

2nπx 

Prediction Intervals. Suppose now that we have a new observation X for which Y is 
unknown and we want to predict Y or find the confidence interval for Y. According to simple 
regression model, 

Y = �0 + �1X + χ 

and it is natural to take Ŷ = �̂0 + �̂1X as the prediction of Y . Let us find the distribution of 
their difference Ŷ − Y. Clearly, the difference will have normal distribution so we only need 
to compute the mean and the variance. The mean is 

E(Ŷ − Y ) = E�̂0 + E�̂1X − �0 − �1X − Eχ = �0 + �1X − �0 − �1X − 0 = 0. 

Since a new pair (X, Y ) is independent of the prior data we have that Y is independent of 
Ŷ . Therefore, since the variance of the sum or difference of independent random variables is 
equal to the sum of their variances, we get 

Var( Ŷ − Y ) = Var( Ŷ ) + Var(Y ) = π2 + Var( Ŷ ), 

where we also used that Var(Y ) = Var(χ) = π2 . To compute the variance of Ŷ we can use 
the formula above with (c0, c1) = (1, X) 

Var( Ŷ ) = Var( �̂0 + X�̂1) = π2
⎠ 1

+
(X̄ − X)2 � 

. 
n 
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� � 

Therefore, we showed that 

ˆ
⎠ 
0, π2

⎠ 
1 + 

1 
+ 

(X̄ − X)2 �� 
.Y − Y � N 

n nπx 
2 

As a result, we have: 

�
⎠ 

Ŷ − Y 
�

�
� 

1 n

π

π̂
2

2 

� tn−2 
(X̄−X)2 n − 2 

π2 1 + 
n 
1 + 

n�2 
x 

and the 1 − � prediction interval for Y is 

Ŷ − c 
n

π

− 

2 

2 

⎠ 
n + 1 + 

(X̄ − 
πx 

2 

X)2 � 
� Y � Ŷ + c 

n

π

− 

2 

2 

⎠ 
n + 1 + 

(X̄ − 
πx 

2 

X)2 � 
. 

These are the dashed curves created by Matlab ’polytool’ function. 

Simultaneous confidence set for (�0, �1) and F -test. We will now construct a 
statistic that will allow us to give a confidence set for both parameters �0, �1 at the same 
time and test the hypothesis of the type 

H0 : �0 = 0 and �1 = 0. (14.0.4) 

The values (0, 0) could be replaced by any other predetermined values. Looking at the proof 
of the joint distribution of the estimates, as an intermediate step we showed that estimates 
�̂0 and �̂1 can be related to 

ˆZ1 = 
≥

n(�̂0 + �̂1X) and Z2 = 
�

nπx 
2�1 

where normal random variables Z1, Z2 are independent of each other and independent of 

nπ̂2 

π2 
� ∂n

2 
−2. 

Also, Z1 and Z2 have variance π2 . Standardizing these random variables we get 

A = 

≥
n 

((�̂0 − �0) + ( �̂1 − �1)X̄) � N(0, 1) and B = 

�

nπx 
2 

(�̂1 − �1) � N(0, 1)
π π 

which implies that A2 + B2 � ∂2
2-distribution. By definition of F -distribution, 

n − 2
(A2 + B2) 

�nπ̂2 

� F2,n−2. 
2 π2 

Simplifying the left-hand side we get 

F := 
n − 2⎠ 

(�̂0 − �0)
2 + X̄2(�̂1 − �1)

2 + 2 X̄(�̂0 − �0)(�̂1 − �1) 
� 
� F2,n−2. 

2π̂2 

100 



� 

This allows us to obtain a joint confidence set (ellipse) for parameters �0, �1. Given a confi­
dence level � ∞ [0, 1] is we define a threshold c by F2,n−2(0, c) = � then with probability � 
we have 

F := 
n − 2⎠ 

(�̂0 − �0)
2 + X̄2(�̂1 − �1)

2 + 2 X̄(�̂0 − �0)(�̂1 − �1) 
� 
� c. 

2π̂2 

This inequality defines an ellipse for (�0, �1). To test the hypothesis (14.0.4), we use the fact 
that under H0 the statistic 

F := 
n − 2

(�̂0
2 + X̄2�̂1

2 + 2 X̄�̂0�̂1) � F2,n−2
2π̂2 

and define a decision rule by 

β = 
H0 : F � c 
H1 : F > c, 

where F2,n−2(c, ∼) = � - a level of significance. 
F -statistic output by Matlab ’regress’ function will be explained in the next section. 
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