
Section 17 

Classification problem. Boosting. 

Suppose that we have the data (X1, Y1), . . . , (Xn, Yn) that consist of pairs (Xi, Yi) such that 
Xi belongs to some set X and Yi belongs to a set Y = {+1, −1}. We will think of Yi as a 
label of Xi so that all points in the set X are divided into two classes corresponding to labels 
±1. For example, Xis can be images or representations of images and Yis classify whether 
the image contains a human face or not. Given this data we would like to find a classifier 

f : X � Y 

which given a point X → X would predict its label Y. This type of problem is called classifi­
cation problem. In general, there may be more than two classes of points which means that 
the set of labels may consist of more than two points but, for simplicity, we will consider the 
simplest case when we have only two labels ±1. 

We will take a look at one approach to this problem called boosting and, in particular, 
prove one interesting property of the algorithm called AdaBoost. 

Let us assume that we have a family of classifiers 

H = {h : X � Y}. 
Suppose that we can find many classifiers in H that can predict labels Yi better than ”tossing 
a coin” which means that they predict the correct label at least half of the time. We will 
call H a family of weak classifiers because we do not require much of them, for example, all 
these classifiers can make mistakes on, let’s say, 30% or even 45% of the sample. 

The idea of boosting consists in trying to combine these weak classifiers so that the 
combined classifier predicts the label correctly most of the time. Let us consider one particular 
algorithm called Adaboost. 

Given weights w(1), . . . , w(n) that add up to one we define the weighted classification 
error of the classifier h by 

w(1)I(h(X1) = Y1) + . . . + w(n)I(h(Xn) = Yn).≤ ≤

AdaBoost algorithm. We start by assigning equal weights to the data points: 

1 
w1(1) = . . . = w1(n) = . 

n 

123




� 

Then for t = 1, . . . , T we repeat the following cycle: 

1. Find ht → H such that weighted error 

�t = wt(1)I(ht(X1) = Y1) + . . . + wt(n)I(ht(Xn) = Yn)≤ ≤

is as small as possible. 

2. Let �t = 
2
1 log 1−

�t 

�t and update the weights: 

e−�tYiht(Xi) 

wt+1(i) = wt(i) ,
Zt 

where 
n 

Zt = 
� 

wte
−�tYiht(Xi) 

i=1 

is the normalizing factor to ensure that updated weights add up to one. 

After we repeat this cycle T times we output the function 

f(X) = �1h1(X) + . . . + �T hT (X) 

and use sign(f(X)) as the prediction of label Y . 
First of all, we can assume that the weighted error �t at each step t is less than 0.5 since, 

otherwise, if we make a mistake more than half of the time we should simply predict the 
opposite label. For �t � 0.5 we have, 

�t =
1 1 − �t 

2 
log 

�t 
� 0. 

Also, we have 
+1 if ht(Xi) = YiYiht(Xi) = −1 if ht(Xi) =≤ Yi. 

Therefore, if ht makes a mistake on the example (Xi, Yi) which means that ht(Xi) = Yi or,≤
equivalently, Yiht(Xi) = −1 then 

e−�tYiht(Xi) �te
wt+1(i) = wt(i) = wt(i). 

Zt Zt 

On the other hand, if ht predicts the label Yi correctly then Yiht(Xi) = 1 and 

e−�tYiht(Xi) e−�t 

wt+1(i) = wt(i) = wt(i). 
Zt Zt 

Since �t � 0 this means that we increase the relative weight of the ith example if we made 
a mistake on this example and decrease the relative weight if we predicted the label Yi 

124




� � �


�


� � � � � 

correctly. Therefore, when we try to minimize the weighted error at the next step t + 1 we 
will pay more attention to the examples misclassified at the previous step. 

Theorem: The proportion of mistakes made on the data by the output classifier sign(f(X)) 
is bounded by 

n T 
1


I(sign(f(Xi))) = Yi) �≤ 4�t(1 − �t). 
n


i=1 t=1 

Remark: If the weighted errors �t will be strictly less than 0.5 at each step meaning 
that we predict the labels better than tossing a coin then the error of the combined classifer 
will decrease exponentially fast with the number of rounds T . For example, if �t � 0.4 then 
4�t(1 − �t) � 4(0.4)(0.6) = 0.96 and the error will decrease as fast as 0.96T . 

Proof. Using that I(x � 0) � e−x as shown in figure 17.1 we can bound the indicator 
of making an error by 

�tht(Xi)I(sign(f(Xi)) ≤= Yi) = I(Yif(Xi) � 0) � e−Yif(Xi) = e−Yi 
PT

t=1 . (17.0.1) 

I(X) −xe

Figure 17.1: Example. 

Next, using the step 2 of AdaBoost algorithm which describes how the weights are 
updated we can express the weights at each step in terms of the weights at the previous step 
and we can write the following equation: 

wT (i)e
−�T YihT (Xi) e−�T YihT (Xi) wT −1(i)e

−�T −1 YihT −1(Xi) 

wT +1(i) = = 
ZT ZT ZT −1 

= repeat this recursively over t 

e−�T YihT (Xi) e−�T −1 YihT −1(Xi) e−�1Yih1(Xi) e−Yif(Xi) 1 
= . . . w1(i) = . 

ZT ZT −1 Z1 
�T Zt n 

t=1 

This implies that 
T

1 
e−Yif(Xi) = wT +1(i) Zt. 

n 
t=1 

Combining this with (17.0.1) we can write 

n n T n T
1
 1 

e−Yif(Xi)I(sign(f(Xi) =≤ Yi)) � =
 Zt wT +1(i) = Zt. (17.0.2) 
n
 n


i=1 i=1 t=1 i=1 t=1 

125 



� �

Next we will compute

n 

Zt = 
� 

wt(i)e
−�tYiht(Xi). 

i=1 

As we have already mentioned above, Yiht(Xi) is equal to −1 or +1 depending on whether 
ht makes a mistake or predicts the label Yi correctly. Therefore, we can write, 

n n n 

Zt = 
� 

wt(i)e
−�tYiht(Xi) = 

� 
wt(i)I(Yi = ht(Xi))e

−�t + 
� 

wt(i)I(Yi =≤ ht(Xi))e �t 

i=1 i=1 i=1 
n n 

= e−�t (1 − 
� 

wt(i)I(Yi =≤ ht(Xi))) + e �t 
� 

wt(i)I(Yi = ht(Xi)) 
i=1 i=1 
� �� � � �� � 

�t �t


= e−�t (1 − �t) + e �t �t.


Up to this point all computations did not depend on the choice of �t but since we bounded 
the error by 

�T
t=1 Zt we would like to make each Zt as small as possible and, therefore, we 

choose �t that minimizes Zt. Simple calculus shows that we should take �t = 1 log 1−
�t 

�t which 
is precisely the choice made in AdaBoost algorithm. For this choice of �t we get 

Zt = (1 − �t) 
�t 

+ �t 
1 − �t 

= 
�

4�t(1 − �t)
1 − �t �t 

and plugging this into (17.0.2) finishes the proof of the bound. 

2 

126



