
18.443 Exam 1 Spring 2015 
Statistics for Applications 

3/5/2015 

1.	 Log Normal Distribution: A random variable X follows a Lognormal(θ, σ2) 
distribution if Y = ln(X) follows a Normal(θ, σ2) distribution. 

For the normal random variable Y	 = ln(X) 

•	 The probability density function of Y is
 
1 (y − θ)2
 

1 − 
f(y | µ, σ2) = √ e 2 σ2 , −∞ < y < ∞. 

2πσ2 

•	 The moment-generating function of Y is
 
1
 

tθ + σ2t2 
tYMY (t) = E[e | θ, σ2] = e 2 

(a). Compute the first two moments of a random variable X ∼
 
Lognormal(θ, σ2).
 

µ1 = E[X | θ, σ2] and µ2 = E[X2 | θ] 
Y 2YHint: Note that X = e and X2 = e where Y ∼ N(θ, σ2) and use
 

the moment-generating function of Y .
 

(b). Suppose that X1, . . . , Xn is an i.i.d. sample from the Lognormal(θ, σ2) 
distribution of size n. Find the method of moments estimates of θ and 
σ2 . 

Hint: evaluate µ2/µ
2 and find a method-of-moments estimate for σ2 
1 

first. 

(c). For the log-normal random variable X = eY , where 

Y	 ∼ Normal(θ, σ2), 

prove that the probability density of X is 

1 (ln(x) − θ)2 

1 1 − 
σ2f(x | θ, σ2) = √ ( )e 2 , 0 < x < ∞. 

2πσ2 x 

(d). Suppose that X1, . . . , Xn is an i.i.d. sample from the Lognormal(θ, σ2) 
distribution of size n. Find the mle for θ assuming that σ2 is known 
to equal σ0

2 . 

(e). Find the asymptotic variance of the mle for θ in (d). 

Solution: 
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(a). 
θ+σ2/2µ1 = E[X] = E[eY ] = MY (1) = e


2θ+2σ2
 
µ2 = E[X2] = E[e2Y ] = MY (2) = e

(b). First, note that: 
2 σ2 

µ2/(µ1) = e

It follows that a method-of-moments estimate for σ2 is 
2σ̂2 = ln(µ̂2/µ̂1) 

where  
µ̂1 = 1 n Xin i=1 
µ̂2 = 1 n X2 

n i=1 i 

Substituting σ̂2 for σ2 in the formula for µ1 we get 
θ+σ̂2/2µ̂1 = e

=⇒ θ̂ = ln(µ̂1) − σ̂2/2 

(c). Consider the transformation 
YX = e . 

which has the inverse: y = ln(x) and dy/dx = 1/x. 

It follows that 
1 

√ 1 1 − 
2σ2 (ln(x)−θ)2 

fX (x) = fY (ln(x))|dy/dx| = e 
2πσ2 x 

(d). The log of the density function for single realizations x is 
(ln(x)−θ)2 

ln[f(x | θ, σ02] = −1 ln(2πσ0
2) − ln(x) − 1 

2 2 σ2 
0 

For a sample x1, . . . , xn, the likelihood function is  n£(θ) = ln[f(xi | θ, σ02]i=1  1 n = − (ln(xi) − θ)2 + (terms not depending on θ)
2σ2 i=1 

0  1 n£(θ) is minimized by θ̂ = ln(xi) – the mle from the sample of n i=1 
Yi = ln(Xi) values.
 

(e). The asymptotic variance satisfies
 
d2J(θ)E[− ] ≈ 1/V ar(θ̂)
dθ2
 

d2J(θ)
 nSince = is constant 
dθ2 σ0

2 

V ar(θ̂) ≈ σ0
2/n 

This asymptotic variance is in fact the actual variance of θ. ˆ

2
 



    

2. The Pareto distribution is used in economics to model values exceed­
ing a threshhold (e.g., liability losses greater than $100 million for a 
consumer products company). For a fixed, known threshhold value of 
x0 > 0, the density function is 

−θ−1f(x | x0, θ) = θxθ 
0x , x ≥ x0, and θ > 1.
 

Note that the cumulative distribution function of X is
 ( o−θ x 
P (X ≤ x) = FX (x) = 1 − . 

x0 

(a). Find the method-of-moments estimate of θ. 

(b). Find the mle of θ. 

(c). Find the asymptotic variance of the mle. 

(d). What is the large-sample asymptotic distribution of the mle? 

Solution: 

(a) Compute the first moment of a Pareto random variable X : J ∞ 
µ1 = x0 

xf(x | x0, θ)dxJ∞ 
= x × θxθ 

0x
−θ−1dx x0 J ∞ 

= θxθ 
0 x−θdx x0 

1 −(θ−1)
= θxθ 

0( )x(θ−1 o0 
θ 

= x0 
θ − 1
 

Solving µ1 = µ̂1 = x for θ gives:
   
ˆ xθ = x−x0

(b). For a single observation X = x, we can write
 

log[f(x | θ)] = ln(θ) + θ ln(x0) − (θ − 1) ln(x)
 
∂ log[f(x|θ) 1] = + ln(x0) − ln(x)∂θ θ
 
∂2 log[f (x|θ)
 ] = − 1 

∂θ2 θ2 

The mle for θ solves 
∂J(θ) ∂ n0 = = ( ln[f(xi | θ)])∂θ ∂θ i=1 

n = [1 + ln(x0) − ln(xi)]1 θ 
n n = θ + n ln(x0) − 1 ln(xi) 

n n =⇒ θ̂ =  n = [ 1 ln(xi/x0)]
−1 

ln(xi)−n ln(x0) n 1
1 

(c). The asymptotic variance of θ̂ is 
1V ar(θ̂) ≈ = θ

2 

nI(θ) n 
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∂2 ln[f(x|θ)] 1Because I(θ) = E[− ] = 
∂θ2 θ2 

(d) The asymptotic distribution of θ̂ is 
√ D 1 n(θ̂ − θ) −−→ N(0, I(θ) ) = N(0, θ2) 

or 
D

θ̂ −−→ N(θ, θ
2 
)n 
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3. Distributions derived from Normal random variables.	 Consider two 
independent random samples from two normal distributions: 

• X1, . . . , Xn are n i.i.d. Normal(µ1, σ1
2) random variables. 

• Y1, . . . , Ym are m i.i.d. Normal(µ2, σ2
2) random variables. 

(a). If µ1 = µ2 = 0, find two statistics
 

T1(X1, . . . , Xn, Y1, . . . , Ym)
 

T2(X1, . . . , Xn, Y1, . . . , Ym)
 

each of which is a t random variable and which are statistically inde­
pendent. Explain in detail why your answers have a t distribution and 
why they are independent. 

(b). If σ2 = σ2
2 > 0, define a statistic 1 

T3(X1, . . . , Xn, Y1, . . . , Ym) 

which has an F distribution. 

An F distribution is determined by the numerator and denominator 
degrees of freedom. State the degrees of freedom for your statistic T3. 

(c). For your answer in (b), define the statistic 

1 
T4(X1, . . . , Xn, Y1, . . . , Ym) = 

T3(X1, . . . , Xn, Y1, . . . , Ym) 

What is the distribution of T4 under the conditions of (b)? 
1 n(d). Suppose that σ2 = σ2

2 . If S2 = (Xi − X)2 , and S2 = 1 X n−1 i=1 Y 
1 m (Yi −Y )2 , are the sample variances of the two samples, show m−1 i=1

how to use the F distribution to find
 

P (SX 
2/S2 > c).
Y 

(e). Repeat question (d) if it is known that σ1
2 = 2σ2

2 . 

Solution: 

(a). Consider 
√ 
√nXT1 = 

S2 
X 

√ 
mYT2 = √ 
S2 
Y 

where 
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1 nX = ∼ N(µ1, σ1

2/n)n 1 Xi 
2
11 n σ

S2 = (Xi − X)2 ∼ (X n−1 1 ) × χ2 
n−1n−1 

1 m ∼ N(µ2, σ2
2/n)m 1 YiY
 =
 

2
2σ1 mS2 = (Yi − Y )2 ∼ (X m−1 1 ) × χ2 

m−1m−1 

We know from theory that X and S2 are independent, and Y andX 
S2 are independent, and all 4 are mutually independent because they Y 
depend on independent samples. 

For µ1 = 0, we can write 
√ 
nX/σ1T1 = √ ∼ tn−12 

X
2
1S /σ

a t distribution with (m−1) degrees of freedom, because the numerator 
is N(0, 1) random variable independent of the denominator which is i 

χ2 /(m − 1).m−1

And for µ2 = 0, we can write 
√ 
mY /σ2T2 = √ ∼ tm−12 

Y
2
2S /σ

a t distribution with (n−1) degrees of freedom, because the numerator 
is N(0, 1) random variable independent of the denominator which is i 

χ2 /(n − 1).n−1

(b). For σ2 = σ2 consider the statistic: 1 2 

2 
Y

2 
XS


S

T3 = 

2 
Y

2 
X

2
1 
2
2 

S

S


/σ

/σ
=
 

The numerator is a χ2 random variable divided by its degrees of n−1 
freedom (n − 1) and the denominator is an independent χ2 

m−1 random 
variable divided by its degrees of freedom (m − 1). By definition the 
distribution of such a ratio is an F distribution with (n−1) and (m−1) 
degrees of freedom in the numerator/denominator. 

(c). The inverse of an F random variable is also an F random variable 
– the degrees of freedom for numerator and denominator reverse. 

(d). In general we know: 
2 
X(n−1)S

σ
∼ χ2 

n−12
1 

2 
Y(m−1)S

σ
∼ χ2 

m−12
2 

which are independent. 
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So, we can develop the expression:
 

(n − 1)S2 /σ2 (n − 1)/σ2 
X 1 1

2S
P (
 X 

S
> c) = P (
 × c)
>
2

(m − 1)S2 /σ2 
Y 2 (m − 1)σ2 

2Y 

σ

σ

2
2 
2
1 
) × c)
(n−1)P (F(n−1),(m−1) > (m−1) × (=
 

The answer is the upper-tail probability of an F distribution with
 
(n−1), (m−1) degrees of freedom, equal to the probability of exceeding
 

2
2 
2
1 

(n−1)( × ((m−1) 
σ

σ
) × c)
 

σ

σ

2
2 
2
1 
= 1 and for (e) use
 σ

σ

2
2 
2
1 
= 1/2
For (d), use
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4.	 Hardy-Weinberg (Multinomial) Model of Gene Frequencies 

For a certain population, gene frequencies are in equilibrium: the geno­
types AA, Aa, and aa occur with probabilities (1 − θ)2 , 2θ(1 − θ), and 
θ2 . A random sample of 50 people from the population yielded the 
following data: 

Genotype Type 
AA Aa aa 
35 10 5 

The table counts can be modeled as the multinomial distribution: 

(X1, X2, X3) ∼ Multinomial(n = 50, p = ((1 − θ)2 , 2θ(1 − θ), θ2). 

(a). Find the mle of θ 

(b). Find the asymptotic variance of the mle. 

(c). What is the large sample asymptotic distribution of the mle? 

(d). Find an approximate 90% confidence interval for θ. To construct 
the interval you may use the follow table of cumulative probabilities 
for a standard normal N(0, 1) random variable Z 

P (Z < z) z 
0.99 2.326 
0.975 1.960 
0.950 1.645 
0.90 1.182 

(e). Using the mle θ̂ in (a), 1000 samples from the 

Multinomial(n = 50, p = ((1 − θ̂)2 , 2θ̂(1 − θ̂), θ̂2)) 

distribution were randomly generated, and mle estimates were com­
puted for each sample: θ̂j 

∗, j = 1, . . . , 1000. 

For the true parameter θ0, the sampling distribution of Δ = θ̂ − θ0 is 
approximated by that of Δ = ˜ θ̂∗ − θ. ˆ The 50-th largest value of Δ̃ was 
+0.065 and the 50-th smallest value was −0.067. 

Use this information and the estimate in (a) to construct a (para­
metric) bootstrap confidence interval for the true θ0. What is the 
confidence level of the interval? (If you do not have an answer to part 
(a), assume the mle θ̂ = 0.25). 

Solution: 

(a). Find the mle of θ 
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• (X1, X2, X3) ∼ Multinomial(n, p = ((1 − θ)2 , 2θ(1 − θ), θ2)) 

• Log Likelihood for θ 
£(θ) = log(f(x1, x2, x3 | p1(θ), p2(θ), p3(θ)))
 

n!
 = log(	 p1(θ)
x1 p2(θ)

x2 p3(θ)
x3 )x1!x2!x3! 

= x1log((1 − θ)2) + x2log(2θ(1 − θ)) 
+x3log(θ

2) + (non-θ terms) 
= (2x1 + x2)log(1 − θ) + (2x3 + x2)log(θ) + (non-θ terms) 

•	 First Differential of log likelihood:
 
(2x1 + x2) (2x3 + x2)


£" (θ) = − + 
1 − θ	 θ 

2x3 + x2	 2x3 + x2 2(5) + 10 ˆ=⇒ θ =	 = = = 0.2 
2x1 + 2x2 + 2x3 2n 2(50) 

(b). Find the asymptotic variance of the mle. 

• V ar(θ̂) −→ 
1 

E[−£"" (θ)] 
•	 Second Differential of log likelihood:
 

d (2x1 + x2) (2x3 + x2)

£"" (θ) = [− + ]

dθ 1 − θ θ 

(2x1 + x2) (2x3 + x2) 
= − − 

(1 − θ)2 θ2 

• Each of the Xi are Binomial(n, pi(θ)) so 
E[X1] = np1(θ) = n(1 − θ)2
 

E[X2] = np2(θ) = n2θ(1 − θ)
 
E[X3] = np3(θ) = nθ2
 

• E[−£"" (θ)] = 
2n 

θ(1 − θ) 

θ̂(1 − θ̂) 0.8(1 − 0.8)• σ̂2 = = = 0.16/100 = (.4/10)2 = (.04)2 
θ̂ 2n 2 × 50 

θ(1− θ)(c) The asymptotic distribution of θ̂ is N(θ, )2n 

(d) An approximate 90% confidence interval for θ is given by i	 i 
{θ : θ̂ − z(α/2) V ar(θ̂) < θ < θ̂ + z(α/2) V ar(θ̂)}i 

where α = 1 − 0.90 and z(.05) = 1.645, and V ar(θ̂) ≈ (.04). 
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So the approximate 90% confidence interval is: 

{θ : 0.20 − .06580 < θ < 0.20 + .06580} 

(e). For the bootstrap distribution of the errors Δ = θ̂− θ0, (where θ0 

is the true value), the approximate 5% and 95% quantiles are 

δ = −0.067 and δ = 0.065. 

The approximate 90% confidence interval is 

{θ : θ̂ − δ < θ < θ̂ − δ}

= [0.2 − 0.065, 0.2 + 0.067]
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