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1.	 Regression Through the Origin 

For bivariate data on n cases: {(xi, yi), i = 1, 2, . . . , n}, consider the linear 
model with zero intercept: 

Yi = βxi + Ei, i = 1, 2, . . . , n 

where Ei are independent and identically distribution N(0, σ2) random
 
variables with fixed, but unknown variance σ2 > 0.
 

When xi = 0, then E[Yi | xi, β] = 0.
 

ˆ ˆ(a). Solve for the least-squares line – Y = βx.
 

(b). Find the distribution of ˆ
β, the slope of the least squares line. 

(c). What is the distribution of the sum of squared residuals from the 
least-squares fit:  n 

(yi − β̂xi)
2SSERR = i=1

(d). Find an unbiased estimate of σ2 using your answer to (c). 

Solution: 

⎤⎡⎤⎡⎤
⎡

(a). Set up the regression model with vectors/matrices: 

y1 x1	 E1 

Y = 
⎢⎢⎢⎣ 

⎥⎥⎥⎦, X = 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
and e = 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

E2 
. . 

y2 
. . 

x2 
. . . . . 

Enyn xn 

and β = [β] 

Y = Xβ + e 

The least-squares line minimizes  n
(yi − βxi)

2 = (Y − Xβ)T (Y − Xβ)1Q(β) =

∂Q(β)ˆThe least squares estimate β solves the first order equation: = 0∂β 
and is given by     

1 

n 
xiyi

1 
n 2x

i 

β̂ = (XT X)−1XT Y = (
n 2)−1
1 xi 

n 
1 xiyi =

The least squares line is 
ˆy = βx  

(b). Since β̂ n  xi= i=1 wiyi, where wi = it is a weighted sum of the n 2x
jj=1 

independent normal random variables: yi ∼ N(xiβ, σ2). It has a normal 
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distribution and all we need to do is compute the expectation and variance 
of β̂: 

n
E[β̂] = E[ i=1 wiyi] 

n n 
= i=1 wiE[yi] = i=1 wi × (xiβ) 

n xi= ( n )xiβi=1 2x
jj=1 

2 n x 
= β ( n

i ) = βi=1 2x
jj=1 

n
V ar[β̂] = V ar[ i=1 wiyi] 

n n2 2= V ar[yi] = σ2 
i=1 wi i=1 wi 

n xi= σ2 × ( 
( 

2 

x2 )
2)ni=1

j 
n 2 

j=1 

x 
i=1= σ2 × 2 

i 
n 

( x
j )

2 
j=1 

= σ2 × 1 
( 

n 
x2)
jj=1 

1So, β̂ ∼ N(β, σ2 ) where σ2 = σ2 × 
( x ) 

nβ β 2 
j=1 j 

(c). For a normal linear regression model the distribution of the sum of 
least-squares residuals has a distribution equal to σ2 (the error variance) 
times a Chi-square distribution with degrees of freedom equal to (n − p), 
where p is the number of independent variables and n is the number of 
cases. In this case, p = 1 so 

n 
β̂)2 ∼ σ2χ2SSERR = i=1(yi − xi df=(n−1). 

(d). Since a Chi-square random variable has expectation equal to its 
degrees of freedom. E[SSERR] = σ2(n − 1) so 

σ2 SSERR ˆ = n−1 

is an unbiased estiamte of σ2 . 

2. Simple Linear Regression 

Consider fitting the simple linear regression model: 

ŷ = β1 + β2xi 

to the following bivariate data: 

i xi yi 
1 -5 -2
 
2 -2 0
 
3 3 3
 
4 4 5
 

The following code in R fits the model: 

> x=c(-5,-2,3,4)
 
> y=c(-2,0,3,5)
 
> plot(x,y)
 
> lmfit1<-lm(y ~ x)
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---

> abline(lmfit1) 
> print(summary(lmfit1)) 

Call:
 
lm(formula = y ~ x)
 

Residuals: 
1 2 3 4 

0.11111 -0.05556 -0.66667 0.61111 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.50000 0.32275 4.648 0.0433 * 
x 0.72222 0.08784 8.222 0.0145 * 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.6455 on 2 degrees of freedom 
Multiple R-squared: 0.9713, Adjusted R-squared: 0.9569 
F-statistic: 67.6 on 1 and 2 DF, p-value: 0.01447 
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(a). Solve directly for the least-squares estimates of the intercept and 
slope of the simple linear regression (obtain the same values as in the R 
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print summary)
 

Solution: The least-squares estimates are given by
   
β̂1β̂ = (XT X)−1XT Y , where =
β̂2 ⎤⎡⎤⎡⎤⎡⎤⎡ 
1 x1 1 −5 y1 −2 ⎢⎢⎣ 

⎥⎥⎦ = 
⎢⎢⎣ 

1 −2 
1 3 

⎥⎥⎦ and Y = 
⎢⎢⎣ 

y2 

y3 

⎥⎥⎦ = 
⎢⎢⎣ 

0 
3 

⎥⎥⎦ 
1 x2X = 
1 x3 

1 x4 1 4 y4 5 

Plugging in we get  
4  −1  

xi1 1 yi 
 

β̂ = (XT X)−1XT Y = 2 xiyixi x −1  i  
4 0 6 

=
0 54 39    
6/4 1.5 

= =
39/54 0.7222

(b). Give formulas for the least-squares estimates of β1 and β2 in terms 
of the simple statistics 

= 0 and = 1 5x y, . 
2S =4.2426 xsx = 

sy = S2 =3.1091 y 

Sxyr = Corr(x, y) = =0.9855 SxSy 

Solution: We know formulas for the least-squares estimates of the slope 
and intercept are given by: 

n √ 
(xi−x)(yi−(y)) S2 

ˆ Sxy y sy1β2 = = S2 = r √ = rn 
(xi−x)2 

x S2 sx 
1 x 

= (0.9855) × 3.1091 = 0.72224.2426
 

β̂1 = y − β̂2x
 
= 1.5 − (0.7222) × (0) = 1.5
 

(c). In the R print summary, the standard error of the slope β̂2 is given 
as σ̂ˆ =0.0878 β2 

Using σ̂ =0.65, give a formula for this standard error, using the statistics 
in (b). 

Solution: We know that the variance of the slope from a simple linear 
regression model (where the errors have mean zero, constant variance σ2 

and are uncorrelated) is 
n

V ar(β̂2) = σ2/ (xi − x)2 = σ2/[(n − 1)S2]1 x

The standard error of β̂2 is the square-root of this variance, plugging in 
the estimate σ̂ for the standard deviation of the errors: 
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√ 
StErr(β̂2) = ˆ (n − 1)sx) = 0.65/( 34.2526) = .088σ/( 

(d). What is the least-squares prediction of Ŷ when X = x = 0, and what 
is its standard error (estimate of its standard deviation)? 

Solution: The least-squres prediction of Ŷ when X = x must be y, the 
mean of the dependent variable. The simple least-squares regression line 
always goes through the point of means: (x, y) = (x, y) 

The standard error of this prediction is just the estimate of the standard 
deviation of the sample mean y which is 

σ̂2 σ̂σ̂y = = √ = 0.65/2 = 0.325 n 4 

3. Suppose that grades on a midterm and final have a correlation coefficient of 
0.6 and both exams have an average score of 75. and a standard deviation 
of 10. 

(a). If a student’s score on the midterm is 90 what would you predict her 
score on the final to be? 

(b). If a student’s score on the final was 75, what would you guess that 
his score was on the midterm? 

(c). Consider all students scoring at the 75th percentile or higher on the 
midterm. What proportion of these students would you expect to be at 
or above the 75th percentile of the final? (i) 75%, (ii) 50%, (iii) less than 
50%, or (iv) more than 50%. 

Justify your answers. 

Solution: 

(a). Let x be the midterm score and y be the final score. The least-squares 
regression of y on x is given in terms of the standardized values: 

ŷ−y x−x= r sy sx 

A score of 90 on the midterm is (90 − 75)/10 = 1.5 standard deviations 
above the mean. The predicted score on the final will be r × 1.5 = .9 
standard deviations above the mean final score, which is 75+(.9)×10 = 84. 

(b). For this case we need to regress the midterm score (x) on (y). The 
same argument in (a), reversing x and y leads to: 

x̂−x y−y= r sx sy 

Since the final score was 75, which is zero-standard deviations above y, 
the prediction of the midterm score is x = 75. 

(c). By the regression effect we expect dependent variable scores to be 
closer to their mean in standard-deviation units than the independdent 
variable is to its mean, in standard-deviation units. Since the 75th per­
centile is on the midterm is above the mean, we expect these students to 
have average final score which is lower than the 75th percentile (i.e., closer 
to the mean). This means (iii) is the correct answer. 
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4.	 CAPM Model 

The CAPM model was fit to model the excess returns of Exxon-Mobil (Y) 
as a linear function of the excess returns of the market (X) as represented 
by the S&P 500 Index. 

Yi = α + βXi + Ei 

where the Ei are assumed to be uncorrelated, with zero mean and constant 
variance σ2 . Using a recent 500-day analysis period the following output 
was generated in R: 
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>	 print(summary(lmfit0)) 

Call: 
lm(formula = r.daily.symbol0.0[index.window] ~ r.daily.SP500.0[index.window], 

x = TRUE, y = TRUE) 

Residuals: 
Min 1Q Median 3Q Max 

-0.038885 -0.004415 0.000187 0.004445 0.026748 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.0004805 0.0003360 -1.43 0.153 
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r.daily.SP500.0[index.window] 0.9190652 0.0454380 20.23 <2e-16 

Residual standard error: 0.007489 on 498 degrees of freedom 
Multiple R-squared: 0.451, Adjusted R-squared: 0.4499 
F-statistic: 409.1 on 1 and 498 DF, p-value: < 2.2e-16 

(a). Explain the meaning of the residual standard error. 

Solution: The residual standard error is an estimate of the standard devi­
ation of the error term in the regression model. It is given by  

n 
(yi−ŷi)2 

SSERR 1σ̂ = =(n−p) n−p 

It measures the standard deviation of the difference between the actual
 
and fitted value of the dependent variable.
 

(b). What does “498 degrees of freedom” mean?
 

Solution: The degrees of freedom equals (n − p) where n = 500 is the
 
number of sample values and p = 2 is the number of regression parameters
 
being estimated.
 

(c). What is the correlation between Y (Stock Excess Return) and X
 
(Market Excess Return)?
 

√ √ 
Solution: The correlation is R − Squared = .451 ≈ .67 

(we know it is positive because of the positive slope coefficient 0.919) 

(d). Using this output, can you test whether the alpha of Exxon Mobil is 
zero (consistent with asset pricing in an efficient market). 

H0 : α = 0 at the significance level α = .05? 

If so, conduct the test, explain any assumptions which are necessary, and 
state the result of the test? 

Solution: Yes, apply a t-test of H0: intercept equals 0. R computes this 
in the coefficients table and the statistic value is −1.43 with a (two-sided) 
p-value of 0.153. For a nominal significance level of .05 for the test (two-
sided), the null hypothesis is not rejected because the p-value is higher 
than the significance level. The assumptions necessary to conduct the test 
are that the error terms in the regression are i.i.d. normal variables with 
mean zero and constant variance σ2 > 0. If the normal distribution doesn’t 
apply, then so long as the error distribution has mean zero and constant 
variance, the test is approximately approximately correct and equivalent 
to using a z-test for the parameter/estimate and the CLT.) 

(e). Using this output, can you test whether the β of Exxon Mobil is less 
than 1, i.e., is Exxon Mobil less risky than the market: 

H0 : β = 1 versus HA : β < 1. 

If so, what is your test statistic; what is the approximate P -value of the 
test (clearly state any assumptions you make)? Would you reject H0 in 
favor of HA? 
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Solution: Yes, we apply a one-sided t-test using the statistic: 
β̂−1 0.919−1T = = = −.081/.0454 = −1.7841 

stErr(β̂) 0.0454 

Under the null hypothesis T has a t-distribution with 498 degrees of free­
dom. This distribution is essentially the N(0, 1) distribution since the 
degrees of freedom is so high. The p-value of this statistic (one-sided) 
is less than 0.05 because P (Z < −1.645) = 0.05 for a Z ∼ N(0, 1) so 
P (T < −1.7841) ≈ P (Z < −1.7841) which is smaller. 

5. For the following batch of numbers: 

5, 8, 9, 9, 11, 13, 15, 19, 19, 20, 29 

(a). Make a stem-and-leaf plot of the batch. 

(b). Plot the ECDF (empirical cumulative distribution function) of the 
batch.
 

(c). Draw the Boxplot of the batch.
 

Solution:
 

> x=c(5,8,9,9,11,13,15,19,19,20,29)
 
> stem(x)
 

The decimal point is 1 digit(s) to the right of the | 

0 | 5899
 
1 | 13
 
1 | 599
 
2 | 0
 
2 | 9
 

> plot(ecdf(x)) 
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> median(x) 

[1] 13 

> quantile(x,probs=.25) 

25% 
9 

> quantile(x,probs=.75) 

75% 
19 

> boxplot(x) 
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Note that the center of the box is at the median (19), the bottom is at 
the 25-th percentile and top is at the 75-th percentile. The inter-quartile 
range is (19-9)=10, so any value more than 1.5 × 9 = 13.5 units above or 
below the box will be plotted as outliers. There are no such outliers. 

6. Suppose X1, . . . , Xn are n values sampled at random from a fixed distri­
bution: 

Xi = θ + Ei 

where θ is a location parameter and the Ei are i.i.d. random variables with 
mean zero and median zero. 

(a). Give explicit definitions of 3 different estimators of the location pa­
rameter θ. 

(b). For each estimator in (a), explain under what conditions it would be 
expected to be better than the other two. 

Solution: 

(a). Consider the sample mean, the sample median, and the 10%-Trimmed 
mean. 

n

θ̂MEAN = n 1 Xi.
 1 

θ̂MEDIAN = median(X1, X2, . . . , Xn) 
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θ̂T rimmedMean = average of {Xi} after excluding the highest 10% 
and the lowest 10% values.
 

(b). We expect the sample mean to be the best when the data are a
 
random sample from the same normal distribution. In this case it is the
 
MLE and will have lower variability than any other estimate.
 

We expect the same median to be the best when the data are a random
 
sample from the bilateral exponential distribution. In this case it is the
 
MLE and will hve lower variability, asymptotically than any other esti­
mate. Also, the median is robust against gross outliers in the data result­
ing from the possibility of sampling distribution including a contamination
 
component.
 

We expect the trimmed mean to be best when the chance of gross errors
 
in the data are such that no more than 10% of the highest and 10% of the
 
lowest could be such gross errors/outliers. For this estimate to be better
 
than the median, it must be that the information in the mean of the re­
maining values (80% untrimmed) is more than the median. This would be
 
the case if 80% of the data values came from a normal distribution/model.
 

arise from a normal distribution with
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Percentiles of the Normal and t Distributions 

q 0.5 q 0.75 q 0.9 q 0.95 q 0.99 q 0.999 
N(0,1) 0.00 0.67 1.28 1.64 2.33 3.09 

t (df=1) 0.00 1.00 3.08 6.31 31.82 318.31 
t (df=2) 0.00 0.82 1.89 2.92 6.96 22.33 
t (df=3) 0.00 0.76 1.64 2.35 4.54 10.21 
t (df=4) 0.00 0.74 1.53 2.13 3.75 7.17 
t (df=5) 0.00 0.73 1.48 2.02 3.36 5.89 
t (df=6) 0.00 0.72 1.44 1.94 3.14 5.21 
t (df=7) 0.00 0.71 1.41 1.89 3.00 4.79 
t (df=8) 0.00 0.71 1.40 1.86 2.90 4.50 
t (df=9) 0.00 0.70 1.38 1.83 2.82 4.30 

t (df=10) 0.00 0.70 1.37 1.81 2.76 4.14 
t (df=25) 0.00 0.68 1.32 1.71 2.49 3.45 
t (df=50) 0.00 0.68 1.30 1.68 2.40 3.26 

t (df=100) 0.00 0.68 1.29 1.66 2.36 3.17 
t (df=500) 0.00 0.67 1.28 1.65 2.33 3.11 
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