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Confidence Intervals and Hypothesis Tests 

Example 9.3A 

X1, . . . , Xn i.i.d. N(µ, σ2), unknown µ, known σ2 . 

Test hypotheses: H0 : µ = µ0 vs H1 : µ  = µ0. 

Use α-level test that rejects H0 when |X − µ0| > t0 

Critical value: t0 = σ z(α/2)X 
Acceptance Region: A(µ0) = {X : |X − µ0| < σ z(α/2)}X 
which is equivalent to X values satisfying: 

− σ z(α/2) < X − µ0 < + σ z(α/2)X X 
or X − σX z(α/2) < µ0 < X + σX z(α/2) 

Confidence Interval for µ:r  
C (X ) = X − σ z(α/2) , X + σ z(α/2)X X 

(Confidence Level = 100(1 − α)%) 
NOTE: X ∈ A(µ0) if and only if µ0 ∈ C (X ) (!!) 
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Duality of Tests and Confidence Intervals 

Theorem 9.3A Suppose 

For every θ0 ∈ Θ there is a test at level α of the hypothesis 
H0 : θ = θ0, and 

A(θ0) is the acceptance region of the test. 

Then the set 
C (X) = {θ : X ∈ A(θ)}

is a 100(1 − α)% confidence region for θ. 
Proof: Because A is the acceptance region of a level-α test: 

P[X ∈ A(θ0)|θ = θ0] = 1 − α 
For a given X = x, 

θ0 ∈ C (x) =⇒ x ∈ A(θ0) 
and x ∈ A(θ0) =⇒ θ0 ∈ C (x) , 

so {x ∈ A(θ0)} ≡ {x : C (x) : θ0}. 
=⇒ P[C (X) : θ0 | θ = θ0] = 1 − α. 
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Duality of Tests and Confidence Intervals
 

Theorem 9.3B Suppose 

C (X) is a 100(1 − α)% confidence region for θ, 
i.e., for every θ0
 

P[C (X) : θ0 | θ = θ0) = 1 − α.
 

Then, an acceptance region for a test at level α of the hypothesis 
H0 : θ = θ0 can be constructed as: 

A(θ0) = {X : C (X) : θ0} 

Proof: Because {x : C (x) : θ0} ≡ {x ∈ A(θ0)}, 
=⇒ P[{x ∈ A(θ0)}] = P[C (X) : θ0 | θ = θ0] = 1 − α. 
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Generalized Likelihood Ratio Tests 

Likelihood Analysis Framework 

Data observations: X = (X1, . . . , Xn) 

Joint distribution of X given by joint pdf/pmf 
f (x | θ), θ ∈ Θ 

Null and Alternative Hypotheses 
H0 : θ ∈ Θ0, and H1 : θ  ∈ Θ0,
 

for some proper subset Θ0 ⊂ Θ.
 

The MLE of θ solves: lik(θ̂) = max lik(θ) 
θ∈Θ 

where lik(θ) = f (x | θ) (a function of θ given data x) 

The MLE of θ under H0 solves lik(θ̂0) = max lik(θ). 
θ∈Θ0 

Definition: The generalized likelihood ratio 
lik(θ̂0)

Λ = (for testing H0 vs H1) 
lik(θ̂) 
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Generalized Likelihood Ratio Test 

Generalized likelihood ratio for testing H0 vs H1:
 
lik(θ̂0)


Λ = 
lik(θ̂) 

Properties of Λ 
Λ > 0, since lik(θ) > 0 
Λ ≤ 1, because lik(θ̂) ≥ lik(θ0) 

Higher values of Λ are evidence in favor H0 

Lower values of Λ are evidence against H0 

Rejection Region of Generalized Likelihood Ratio Test: 
{x : Λ < λ0} for some λ0 

For level-α test of simple H0 choose λ0 :
 
P(Λ < λ0 | H0) = α
 

If H0 is composite, then choose largest λ0 :
 
P(Λ < λ0 | θ) ≤ α, for all θ ∈ Θ0
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Generalized Likelihood Ratio Test 

Define LRStat by Rescaling the Likelihood Ratio 
lik(θ̂0)

LRStat = −2 × log(Λ) = −2 × log[ ] 
lik(θ̂) 

Since 0 < Λ < 1, 
LRStat > 0 

Evidence against H0 given by high values of LRStat. 

For simple H0 : θ = θ0,
 
LRStat = 2[R(θ̂) − R(θ0)]
 

From asymptotic theory 
θ)2R""(ˆR(θ0) ≈ R(θ̂) + (θ0 − θ̂)R"(θ̂) + 1 (θ0 − ˆ θ)2 

so 
θ − θ0]2 × [−R""(ˆLRStat	 ≈ [ˆ θ)] 

= [ 
√ 
n(θ̂ − θ0)2] × [−R""(θ̂)/n] D−−→ [ nI(θ0)(θ̂ − θ0)2] ∼ [N(0, 1)]2 ∼ χ2 

1 
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Constructing Generalized Likelihood Ratio Tests 

Test Statistic for Generalized Likelihood Ratio Test 
lik(θ̂0)LRStat = −2 log(Λ) = −2 × log[ ]
lik(θ̂) 

= 2 × [R(θ̂) − R(θ̂0)] 
Example 1: Test for Mean of Normal Distribution 

X1, . . . , Xn i.i.d. N(θ, σ2), (known variance) 
1log[f (xi | θ)] = −1 ln(2πσ2) − (xi − θ)2 

2 2σ2  n 1 nR(θ) = log[f (xi | θ)] = −n ln 2πσ2 − (xi − θ)2 
i=1 2 2σ2 i=1

For testing H0 : θ = θ0   1 n nLRStat = 2[R(θ̂) − R(θ0)] = 
σ2 [− (xi − θ̂)2 + (xi − θ0)2]1 1

Note that  n n(xi − θ0)2 = (xi − x)2 + n(x − θ0)2 
1 1 n = (xi − θ̂)2 + n(x − θ0)2 

1


n(x − θ0)2
 

So LRStat = ∼ N(0, 1)underH0
σ2 
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Constructing Generalized Likelihood Ratio Tests 

Test Statistic for Generalized Likelihood Ratio Test 
lik(ω̂0)LRStat = −2 log(Λ) = −2 × log[ ]lik(ω̂) 

= 2 × [R(ω̂) − R(ω̂0)] 
Example 2: Test for Mean of Normal Distribution 

X1, . . . , Xn i.i.d. N(θ, σ2), (unknown variance) 
Parameter ω = (θ, σ2) ∈ Ω = (−∞, +∞) × (0, ∞) 

1log[f (xi | θ, σ2)] = −1 ln(2πσ2) − (xi − θ)2 
2 2σ2 

1 nR(ω) = R(θ, σ2) = −n ln 2πσ2 − (xi − θ)2 
2 2σ2 i=1

For testing H0 : θ = θ0: use the overall mle and the mle given H0 
nOverall mle’s: θ̂ = x , and σ̂2 = (xi − x)2/n1

R(θ, ˆ σ̂2) = −n ln(2π) − n ln(σ̂2) − n 
2 2 2 

nUnder H0 : θ̂0 = θ0, and σ̂2 = (xi − θ0)2/n0 1

R(θ̂0, σ̂0
2) = −n ln(2π) − n ln(σ̂0

2) − n 
2 2 2 

LRStat = 2[R(θ, ˆ σ̂2) − R(θ0, σ̂2)] = n ln(σ̂2/σ̂2)0 0

MIT 18.443 Testing Hypotheses II 11

∑
∑
∑



  

Hypothesis Testing II Duality of Confidence Intervals and Tests 
Generalized Likelihood Ratio Tests 

Constructing Generalized Likelihood Ratio Tests
 

Example 2: Test for Mean of a Normal Distribution 
From before, 

LRStat = 2[R(θ, ˆ σ̂2) − R(θ0, σ̂0
2)] = n ln(σ̂0

2/σ̂2) 

Note that 
1 n 1 nσ̂2 = (xi − θ0)2 = [ (xi − x)2 + n(x − θ0)2]0 n 1 n 1


= σ̂2 + (x − θ0)2
   
(x − θ0)2 

So LRStat = n ln 1 + 
σ̂2


LRStat is a monotone function of |T |, where
 √ 
n(X −θ0)T = s 

2since s = nσ̂2/(n − 1) 

Under H0 T ∼ t-distribution on (n − 1) degrees of freedom. 

Result: Generalized LR Test ⇐⇒ t Test. 
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Generalized Likelihood Ratio Tests for Multinomial 
Distributions 

Bernoulli Trials 

B1, B2, . . . , Bn i.i.d. Bernoulli(p)
 
P(Bi = 1 | p) = p = 1 − P(Bi = 0 | p)
 

X = B1 + B2 + · · · Bn, count of Bernoulli successes. 
X ∼ Binomial(n, p) 

Multinomial Trials 

M1, M2, . . . , Mn i.i.d. Multinomial(p1, p2, . . . , pm) 
Each Mi has m possible outcomes
 

A1, A2, . . . , Am (“cell outcomes”)
 
(mutually exclusive and exhaustive) 

P(Mi = Aj ) = pj , j = 1, . . . , m where 
m pj ≥ 0, for j = 1, . . . , m and pj = 1.1 

Define counts X1, X2, . . . , Xm
 

X1 = #(Mi equal to A1), . . . , Xm = #(Mi equal to Am),
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Multinomial Distribution 

Multinomial Trials (continued) 

The collection of counts follows a Multinomial Distribution 
n = number of multinomial trials, 
p = (p1, p2, . . . , pm) (cell probabilities) 

the pmf of (X1, X2, . . . , Xm) is   
n! x1 x2 xmP(X1 = x1, . . . , Xm = xm) = p1 p · · · px1!···xm! 2 m 

The values of xi are constrained, n = j xj . 
mThe parameter space is Ω = {p : pj ≥ 0, pj = 1}1 

Note: Dimension of Ω is (m − 1) 

Single counts are binomial random variables 
E.g., X1 ∼ Binomial(n, p1), and X2 ∼ Binomial(n, p2), etc. 

Multiple counts are not independent 
E.g., X1 ≡ n − (X2 + X3 + · · · Xm) 
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Examples Using Multinomial Distributions
 

Hardy-Weinberg Equilibrium 
Data consisting of counts of phenotypes: X1, X2, X3 

Cell probabilities (1 − θ)2, 2θ(1 − θ) θ2; 0 < θ < 1. 

Hypothesis: the Hardy-Weinberg model is valid for specific 
data. 
Counts data from various applications 

Asbestos fiber counts on slides 
Counts of Bacterial clumps 

Hypothesis: a Poisson(λ) model is valid for specific data 
Histogram of sample data 

The frequency histogram of bin counts follows a multinomial 
distribution 
(for m fixed bins in a data histogram) 

Hypothesis: the data is a random sample from some fixed 
distribution or some given family of distributions. 
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Likelihood Ratio Test for Multinomial Distribution 

Null Hypothesis H0: A model that specifies the cell probabilities 
p1(θ), p2(θ), ..., pm(θ) 

which may vary with a parameter θ (taking values in ω0) 
Alternate Hypothesis H1: General model that assumes 

p = (p1, p2, . . . , pm) is fixed, but unknown 
Only constraint on p is that j pj = 1 (and pj ≥ 0) 

Constructing the Likelihood Ratio Test 

Compute mle under H0: p̂0 = (p1(θ̂), . . . , pm(θ̂))
 
p̂0 maximizes Lik(p) for p ∈ Ω0
 

where Ω0 = {p = (p1(θ), . . . , pm(θ)), θ ∈ ω0}

Compute overall mle
 

p̂ = (p̂1, . . . , p̂m), where p̂j = xj /n for all cells Aj .
 
Compute the likelihood ratio  xjLik(p̂0) m pj (θ̂)Λ = =Lik(p̂) j=1 p̂j 
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Likelihood Ratio Test For Multinomial Distribution 

Constructing the Likelihood Ratio Test (continued) 

Compute the likelihood ratio   xj 
Lik(p̂0) m pj (θ̂)

Λ = = Lik(p̂) j=1 p̂j

Compute scaled log likelihood ratio:
 
LRStat = −2 × log(Λ)
 

m = 2	 j=1 xj ln(p̂j /pj (θ̂)) 
m = 2 Oj ln(Oj /Ej )j=1
 

where Oj = Xj and Ej = npj (θ̂)
 

Pearson Chi-Square Statistic
 
(Oi − Ei )

2
 
mChiSqStat = j=1 Ei 

LRStat and ChiSqStat are almost equivalent 
x−x02 

Use Taylor Series: f (x) = x ln(x/x0) ≈ (x − x0) + 12 x0 
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Llikelihood Ratio Test for Multinomial Distribution 

LRStat and Pearson’s ChiSquare Statistic 
mLRStat = 2 Oj ln(Oj /Ej )j=1
 

where Oj = Xj and Ej = npj (θ̂)
 
(Oi − Ei )

2
 
mChiSqStat = j=1 Ei 

Asymptotic/Approximate Distribution 

Chi-square distribution with q degrees of freedom 

Degrees of freedom q:
 
q = dim(Ω) − dim(ω0)
 

Dimension of Ω = {p} (unconstrained )
 
minus dimension of {p} under H0 (θ ∈ ω0) 

(Proven in advanced statistics course) 

For Multinomial (X1, . . . , Xm), with p = (p1, . . . , pm) 
dim(Ω) = m − 1 
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Degrees of Freedom for ChiSquare Test Statistic 

For Hardy-Weinberg Model, m = 3, dim(Ω) = (m − 1) = 2, 
and k = dim(ω0) = 1 so
 

q = m − 1 − k = 1.
 

For distribution of m set of counts and 
ω0 = {Poisson(λ), λ > 0}

dim(Ω) = m − 1 and k = dim(ω0) = 1, so 
q = m − 1 − 1 = m − 2 

For distribution of m set of counts and 
ω0 = {Normal(θ, σ2)} distributions. 

dim(Ω) = m − 1 and k = dim(ω0) = 2, so 
q = m − 1 − 2 = m − 3 
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