
Hypothesis Testing 

Testing Hypotheses 

MIT 18.443 

Dr. Kempthorne 

Spring 2015
 

MIT 18.443 1Testing Hypotheses 



Hypothesis Testing 

Bernoulli Trials 
Bayesian Approach 
Neyman-Pearson Framework 
P-Values 

Outline 

1 Hypothesis Testing 
Bernoulli Trials 
Bayesian Approach 
Neyman-Pearson Framework 
P-Values 

MIT 18.443 2Testing Hypotheses 



) 0 (H0) or 1 (H1)

Hypothesis Testing 

Bernoulli Trials 
Bayesian Approach 
Neyman-Pearson Framework 
P-Values 

Hypothesis Testing: Bernoulli Trials 

Statistical Decision Problem 
Two coins: Coin 0 and Coin 1 

P(Head | Coin 0) = 0.5 
P(Head | Coin 1) = 0.7 

Choose one coin, toss it 10 times and report number of Heads 
Decide which coin was chosen. 

Hypothesis Testing Framework 

Data: X = number of heads in 10 tosses of coin 
Probability Model
 

X ∼ Binomial(n = 10, prob = θ)
= , 

P(X = x | θ) = 
n 
x 

θx (1 − θ)n−x , x = 0, 1, . . . , 10 

Hypotheses: 
H0 : θ = 0.5 
H1 : θ = 0.7 

Specify a decision rule δ : δ(X =MIT 18.443 3Testing Hypotheses 
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Hypothesis Testing: Bernoulli Trials 

Bayesian Approach to Hypothesis Testing 

Specify prior distribution on Hypotheses (θ)
 
P(H0) = P(θ = 0.5) = π0
 

P(H1) = P(θ = 0.7) = 1 − π0.
 
Observe X = x (count of heads on 10 tosses), which specifies 
the likelihood function. = ,


n
 
lik(θ) = P(X = x | θ) = θx (1 − θ)n−x 

x 
Compute posterior probabilities 

P(H0 ∩ x) P(H0)P(X = x | H0)
P(H0 | x) = = 

P(x) P(x) 
P(H1 ∩ x) P(H1)P(X = x | H1)

P(H1 | x) = = 
P(x) P(x) 

Note: P(x) = P(H0 ∩ x) + P(H1 ∩ x) (Law of Total Probability) 
Decision rule: δ(x) = 0 if P(H0 | x) > 1/2. 
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Decision Rule Based on Posterior Odds Ratio 

Posterior Odds Ratio: 

P(H0 | x) P(H0)P(X = x | H0)/P(x) 
= 

P(H1 | x) P(H1)P X = x | H1)/P(x)P (( P ( 
P(H0) P(X = x | H0) 

= × 
P(H1) P(X = x | H1) 

= [Prior Odds] × [Likelihood Ratio] 
P(H0 | x)

Decision rule: δ(x) = 0 if > 1. 
P(H1 | x)
 

Decision rule equivalent to δ(x) = 0 if
 
[Likelihood Ratio] > c 

(= P(H1)/P(H0)) 
Likelihood Ratio measures evidence of x in favor of H0 

Stronger evidence ≡ Higher Likelihood Ratio (smaller x) 
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Bayes Decision Rules 

Bayes Decision Rule: 

Given prior: P(H0) = π0 and P(H1) = 1 − π0, 
Accept H0 if 

P(H1) (1 − π0)
[Likelihood Ratio] > = 

P(H0) π0 
Reject H0 if 

P(H1) (1 − π0)
[Likelihood Ratio] ≤ = 

P(H0) π0 

Example Cases: 

π0 = 1/2: Accept H0 if [Likelihood Ratio ] > 1 
π0 = 1/11: Accept H0 if [Likelihood Ratio ] > 10. 
(Stronger evidence required to accept H0 

π0 = 5/6: Accept H0 if [Likelihood Ratio ] > 1/5. 
(H0 accepted with weaker evidence) 
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Neyman-Pearson Framework: Components
 

Hypotheses 
Null Hypothesis: H0. 
Alternative Hypothesis: H1. 

Decision rule δ = δ(X ): accepts/rejects H0 based on data X 
δ(x) = 0 (accept H0) and δ(x) = 1 (reject H0) 

Evaluate performance of decision rules using probabilities of 
two types of errors: 

Type I Error: Rejecting H0 when H0 is true.
 
P(Type I Error) = P(δ = 1 | H0)
 

Type II Error: Accepting H0 when H1 is true.
 
P(Type II Error) = P(δ = 0 | H1)
 

Optimal decision rule:
 
Minimizes: P(Type II Error)
 
Subject to: P(Type I Error) ≤ α
 

where α : 0 < α < 1 is the significance level. 
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Consider “Risk Set” R 
R = {(x , y) : x = P(δ = 1 | H0), 

y = P(δ = 0 | H1), for a decision rule δ}
Note that: 

R = {(x , y) : x = P(Type I Error for δ), 
y = P(Type II Error for δ), 

for a decision rule δ} 

The Risk Set R is convex on the space of all decision rules 
D = {δ} (including randomized decision rules) 

Apply convex optimization theory to solve for optimal δ using 
h(δ) = P(δ = 1 | H0) and g(δ) = P(δ = 0 | H1) 

Constrained Optimization: 
Minimize: g(δ), subject to: h(δ) ≤ α 

Unconstrained Optimization of Lagrangian: 
Minimize: q(δ, λ) = g(δ) + λ[h(δ) − α] 
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Solving the Optimization: 

Fix λ and minimize
 
q ∗(δ) = g(δ) + λh(δ) for δ ∈ D
 

For the solution δ∗ , set K ∗ = q ∗(δ∗) 
The risk point for δ∗ lies on the line
 

{(x , y) : K ∗ = y + λx}

which is equivalent to
 

{(x , y) : y = K ∗ − λx}

δ∗ corresponds to the tangent point of R with slope= −λ. 
Specify λ to solve h(δ∗) = α.
 

If h(δ∗) > α, then increase λ
 
If h(δ∗) < α, then decrease λ
 

Nature of Solution: For given λ, the solution δ∗ minimizes 
q ∗(δ) = (δ) + λh(δ) = P(δ = 0 | H1) + λP(δ = 1 | H0)gg 

= [(1 − δ(x))f1(x) + λδ(x)f0(x)]dxX g 
= 1 + X [δ(x) × [λf0(x) − f1(x)]dx 
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Nature of Solution: For given λ, the solution δ∗ minimizes 
q ∗(δ) = gg (δ) + λh(δ) = P(δ = 0 | H1) + λP(δ = 1 | H0) 

= [(1 − δ(x))f1(x) + λδ(x)f0(x)]dxX g
= 1 + X δ(x) × [λf0(x) − f1(x)]dx 

To minimize q ∗(δ): 

Note that δ(x) : 0 ≤ δ(x) ≤ 1 for all tests δ 
Set δ∗(x) = 0 when [λf0(x) − f1(x)] > 0 
Set δ∗(x) = 1 when [λf0(x) − f1(x)] < 0 

The test δ∗ accepts H0, δ∗(x) = 0, when 
f0(x) 

> 1/λ
f1(x) 

and rejects H0, δ∗(x) = 1, when 
f1(x) 

> λ 
f0(x)
 

The signficance level of δ∗ is
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Neyman-Pearson Lemma: 

H0 and H1 are simple hypotheses. 

Define the test δ∗ of significance level α using the Likelihood 
Ratio: 

δ∗(X ) = 1 when LikelihoodRatio < c , and c is 
chosen such that: 

P(δ∗(X ) = 1 | H0) = α. 

Then δ∗ is the most powerful test of size α. For any other test δ': 
If P(δ' = 1 | H0) ≤ α, then 
P(δ'(X ) = 1 | H1) ≤ P(δ∗(X ) = 1 | H1) 

Connection To Bayes Tests: 

Consider the Likelihood Ratio Test δ∗ corresponding to c 

δ∗ is the Bayes test corresponding to
 
P(H1)
 

= c = 1/λ.
P(H0) 
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Additional Terminology 

The power of a test rule δ is
 
β = P(reject H1 | H1) = 1 − P(Type II Error).
 

The acceptance region of a test rule δ is 
{x : δ(x) = 0} 

The rejection region of a test rule δ is 
{x : δ(x) = 1} 
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Additional Terminology 

A test statistic T (X ) is often associated with a decision rule 
δ, e.g.,
 

T (X ) > t ∗ ⇐⇒ δ(X ) = 1
 

The distribution of T (X ) given H0 is the null distribution. 

An hypothesis is a simple hypothesis if it completely
 
specifies the distribution of X , and of T (X ).
 
E.g.,
 

X ∼ f (x | θ), θ ∈ Θ
 
H0 : θ = θ0 (simple)
 
H1 : θ = θ1 (simple)
 

An hypothesis is a composite hypothesis if it does not
 
completely specify the probability distribution.
 
E.g., H0 : X ∼ Poisson(θ) for some θ > 0.
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Additional Terminology 

Uniformly Most Powerful Tests. 
Suppose
 

H0 : θ = θ0 is simple
 
H1 : θ > θ0 is composite
 
(The value θ0 is fixed and known.) 

If the most powerful level-α test of H0 versus a simple 
alternative θ = θ1 > θ0 is the same for all alternatives θ1 > θ0, 
then it is the Uniformly Most Powerful Test of H0 versus H1. 

One-sided Alternative: H1 : θ > θ0, or, H1 : θ < θ0 

Two-sided Alternative: H1 : θ  = θ0 
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P-Values 

Neyman-Pearson Hypothesis-Testing Framework 

X ∼ f (x | θ), θ ∈ Θ (pdf or pmf)
 
Test Hypotheses:
 

H0 : θ = θ0 versus an alternative H1
 

(θ0 is a fixed value, so H0 is simple)
 
Test Statistic: 

T (X ), defined so that large values 
are evidence against H0 

The rejection region is 
{x : T (X ) > t0} where t0 is chosen to that 
P(T ≥ t0 | H0) = α, (the significance level of test) 

Definition: Given X = x is observed, the P-value of the test 
statistic T (x) is 
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What P-Values Are: 

The P-Value is the smallest significance level at which H0 

would be rejected. 

The P-Value is the chance of observing evidence as extreme or 
more extreme than T (x) under the probability model of H0. 

The P-Value measures how unlikely (surprising) the data are 
if H0 is true. 

What P-Values Are Not: 

The P-value is not the probability H0 is true. 
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