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Hypothesis Testing: Bernoulli Trials

Statistical Decision Problem

@ Two coins: Coin 0 and Coin 1

P(Head | Coin0) = 0.5

P(Head | Coin1) = 0.7
@ Choose one coin, toss it 10 times and report number of Heads
@ Decide which coin was chosen.

Hypothesis Testing Framework
@ Data: X = number of heads in 10 tosses of coin

@ Probability Model
X ~ Binomial(n = 10, prob = 0)

P(X =x|60) = ( )’Z >9X(1—0)”X,x:0,1,...,10
@ Hypotheses:

Ho:0=05

H1 :0=0.7
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Hypothesis Testing: Bernoulli Trials

Bayesian Approach to Hypothesis Testing

@ Specify prior distribution on Hypotheses (6)
P(Hy) = P(#=05) = @
P(Hy) = P(#=07) = 1—mo.
@ Observe X = x (count of heads on 10 tosses), which specifies
the likelihood function.

lik(6) = P(X = x | 8) = ( " > 6*(1— 0)

@ Compute posterior probabilities

P(Ho | X) 'D(II;I(()S X) _ P(HO)PSD)EXT X | HO)
P(H B P(Hl ﬁX) B P(Hl)P(X =X | Hl)
1) = pay— ~ P()

Note: P(x) = P(Ho N x) 4+ P(H1 N x) (Law of Total Probability)
@ Decision rule: 6(x) =0 if P(Hp | x) > 1/2.
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Decision Rule Based on Posterior Odds Ratio

@ Posterior Odds Ratio:

P(Ho | x)  P(Ho)P(X = x| Ho)/P(x
P(Hy | x) — P(H1)P(X = x| H1)/P(x)
_ P(Ho)] " [P(X:X | Ho)}
P(Hl) P(X =X | Hl)
= [Prior Odds] x [Likelihood Ratio]
e . e P(Ho | x)
@ Decision rule: §(x) =0 if Bl | %) > 1.

@ Decision rule equivalent to 6(x) = 0 if
[Likelihood Ratio] > ¢
(= P(H1)/P(Ho))
@ Likelihood Ratio measures evidence of x in favor of Hy
Stronger evidence = Higher Likelihood Ratio (smaller x)
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Bayes Decision Rules

Bayes Decision Rule:
e Given prior: P(Hp) = mp and P(H1) = 1 — my,
@ Accept Hy if

. . . P(Hl) (1 - 7T0)
Likelihood Ratio| > =
[ ] P(Ho) 0
@ Reject Hy if
. . . P(Hl) (1 — 7'('0)
Likelihood Ratio] < =
[ = P(Ho) o

Example Cases:
e 7y = 1/2: Accept Hy if [Likelihood Ratio | > 1
e 7y = 1/11: Accept Hy if [Likelihood Ratio | > 10.
(Stronger evidence required to accept Hp
e m9 = 5/6: Accept Hp if [Likelihood Ratio | > 1/5.
(Ho accepted with weaker evidence)
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Neyman-Pearson Framework: Components

@ Hypotheses
o Null Hypothesis: Hp.
o Alternative Hypothesis: Hj.
e Decision rule § = §(X): accepts/rejects Hy based on data X
d(x) = 0 (accept Hp) and d(x) =1 (reject Hp)
@ Evaluate performance of decision rules using probabilities of
two types of errors:
o Type | Error: Rejecting Hy when Hj is true.
P(Type I Error) = P(6 = 1| Hp)
e Type Il Error: Accepting Hy when Hj is true.
P(Type Il Error) = P(6 =0 | Hy)
@ Optimal decision rule:
Minimizes:  P(Type Il Error)
Subject to:  P(Type | Error) <
where o : 0 < o < 1 is the significance level.
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o Consider “Risk Set” R
R={(x,y) : x=P(6 =1| Hp),
y =P(d =0| Hy), for a decision rule 6}
Note that:
R ={(x,y) : x = P(Type | Error for 9),
y = P(Type Il Error for ¢),
for a decision rule ¢}

@ The Risk Set R is convex on the space of all decision rules
D = {4} (including randomized decision rules)

@ Apply convex optimization theory to solve for optimal § using
h(0) = P(6 =1]| Hy) and g(0) = P(6 =0 | Hy)

Constrained Optimization:
Minimize: g(J), subject to: h(J) <
Unconstrained Optimization of Lagrangian:
Minimize: q(0,\) = g(d) + A\[h(0) — o]
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Solving the Optimization:

@ Fix A and minimize
q*(0) = g(9) + Ah(9) for 6 € D
@ For the solution §*, set K* = ¢*(d*)
@ The risk point for 6* lies on the line
[(,y): K" =y + Ax}
which is equivalent to
{(x.y) 1y =K"= Ax}
@ & corresponds to the tangent point of R with slope= —\.
@ Specify A to solve h(6*) = a.
If h(0*) > «, then increase A
If h(6*) < a, then decrease A
Nature of Solution: For given A, the solution §* minimizes
qg"(9) = g(o)+ /\h(é) P(6=0]| Hi)+ AP(6 =1 Hp)
= el = 800)A(x) + AT (x)]dk
1+ fX[(S X [AMo(x) — fi(x)]dx
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Nature of Solution: For given A, the solution §* minimizes

g (8) = (5)+/\h(5) P(3 =01 H)+AP(5 =1 Ho)
= [Rl(1 = 8(x))fi(x) + Ad(x)fo(x)]dx
= 1+ [, 0(x) x [Mo(x) — fi(x)]dx

To minimize g*(6):
@ Note that d(x) : 0 < §(x) < 1 for all tests &
@ Set 0*(x) = 0 when [Afo(x) — fA(x)] >0
@ Set 6*(x) = 1 when [Afp(x) — fi(x)] <O
)=

The test 0* accepts Hp, 6*(x) = 0, when
fo(x)
— > 1/A
Ay - Y
and rejects Hp, 6*(x) = 1, when
f
1(x) \
fo(x)

The signficance level of 6* is
a = E[6"(X) | Ho] = P[fi(x)/fo(x) > A | Hol
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Neyman-Pearson Lemma:
@ Hp and Hj are simple hypotheses.
@ Define the test ¢* of significance level o using the Likelihood
Ratio:
0*(X) = 1 when LikelihoodRatio < ¢, and c is

chosen such that:
P(6*(X) =1| Hp) = «.

Then §* is the most powerful test of size a. For any other test ¢’

If P(6' =1]| Hp) < «, then
P(§'(X)=1|H)) < P(6*(X)=1]|H)
Connection To Bayes Tests:
@ Consider the Likelihood Ratio Test 0* corresponding to ¢

@ 0" is the Bayes test corresponding to

P(H) _
P(Ho) 1/
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Additional Terminology

@ The power of a test rule ¢ is

B = P(reject Hi | H1) =1 — P(Type Il Error).
@ The acceptance region of a test rule ¢ is

{x:0(x) =0}
@ The rejection region of a test rule § is

{x:d(x) =1}
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Additional Terminology

o A test statistic T(X) is often associated with a decision rule
6, eg.,
T(X)>tr <= 4§X)=1
@ The distribution of T(X) given Hp is the null distribution.

@ An hypothesis is a simple hypothesis if it completely
specifies the distribution of X, and of T(X).
E.g.,
X~f(x|0),0€0
Ho : 0 = 09 (simple)
H1 0= 91 (simple)
@ An hypothesis is a composite hypothesis if it does not
completely specify the probability distribution.
E.g., Ho : X ~ Poisson(f) for some 6 > 0.
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Additional Terminology

e Uniformly Most Powerful Tests.
e Suppose
Ho : 0 = 6y is simple
H; : 0 > 6y is composite
(The value 6y is fixed and known.)
o If the most powerful level-a test of Hy versus a simple
alternative 8 = 01 > g is the same for all alternatives 6; > 6,

then it is the Uniformly Most Powerful Test of Hy versus H;.

@ One-sided Alternative: H; : 0 > tg, or, H; : 0 < by
o Two-sided Alternative: H; : 0 # 6g
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Neyman-Pearson Hypothesis-Testing Framework
e X ~f(x|#),0¢c 0O (pdf or pmf)
@ Test Hypotheses:
Hp : 6 = g versus an alternative H;
(0o is a fixed value, so Hp is simple)
e Test Statistic:
T(X), defined so that large values
are evidence against Hp
@ The rejection region is
{x: T(X) > to} where ty is chosen to that
P(T >ty | Ho) = «, (the significance level of test)
Definition: Given X = x is observed, the P-value of the test
statistic T(x) is
P-Value = P(T(X) > t(x) | Ho).
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Hypothesis Testing

What P-Values Are:

@ The P-Value is the smallest significance level at which Hy
would be rejected.

@ The P-Value is the chance of observing evidence as extreme or
more extreme than T(x) under the probability model of Hp.

@ The P-Value measures how unlikely (surprising) the data are
if Hp is true.

What P-Values Are Not:

@ The P-value is not the probability Hy is true.
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