
18.445 HOMEWORK 1 SOLUTIONS 

Exercise 1.2. A graph G is connected when, for two vertices x and y of G, there exists a sequence of vertices 
x0, x1, . . . , xk such that x0 = x, xk = y, and xi ∼ xi+1 for 0 ≤ i ≤ k − 1. Show that random walk on G is 
irreducible if and only if G is connected. 

Proof. Let P denote the transition matrix of random walk on G. The random walk is irreducible if for any 
vertices x and y there exists an integer k such that P k(x, y) > 0. Note that P k(x, y) > 0 if and only if there  k−1
exist vertices x0 = x, x1, . . . , xk = y such that P (xi, xi+1) > 0, i.e., xi ∼ xi+1 for all 0 ≤ i ≤ k − 1.i=0 
Therefore, the random walk is irreducible if and only if G is connected. D 

Exercise 1.3. We define a graph to be a tree if it is connected but contains no cycles. Prove that the 
following statements about a graph T with n vertices and m edges are equivalent: 

(a) T is a tree. 
(b) T is connected and m = n − 1. 
(c) T has no cycles and m = n − 1. 

Proof. The equivalence can be easily seen from Euler’s formula m = n + l − 2 where l denotes the number 
of faces of the graph, because any two of the following conditions will imply the other: 

(1) T is connected ⇐⇒ m = n + l − 2; 
(2) T has no cycles ⇐⇒ l = 1; 
(3) m = n − 1. 

Since this simple equivalence is a special case (and sometimes the starting point of the proof) of Euler’s 
formula, it should be proved without the use of the more general theorem. We provide a long yet elementary 
proof here. All three parts of the following proof are based on a simple operation, namely, removing one 
edge and one vertex at a time. We assume without loss of generality that G has at least one edge. First we 
need a claim. 

Claim: If each vertex of a graph G has degree at least 2, then G contains a cycle. 
Start from any vertex x0 of G and we can find x1 ∼ x0. Suppose we already find distinct x0, . . . , xi such 

that x0 ∼ x1 ∼ · · · Since xi has degree at least 2, we can find xi+1  xi−1 such that xi ∼ xi+1. If∼ xi. = 
xi+1 = xj for some j < i − 1, then we form a cycle. Otherwise we continue the process. The process must 
end because G is finite, so G contains a cycle. 

(a) implies (b): Since T is connected and contains no cycles, the claim implies that there exists a vertex 
of degree 1 in T . We delete this vertex and the attached edge from T , and the remaining object T ' is still a 
connected graph with no cycles. We continue this process until the remaining graph has only one edge and 
thus two vertices. Since at each step we delete one edge and one vertex, it follows that m = n − 1. 

(b) implies (c): If there exists a vertex of degree 1 in T , we delete this vertex and the attached edge from 
'T . Then the remaining object T ' is still a connected graph with m = n' − 1 where m' is the number of 

edges and n' is the number of vertices. We continue this process until the remaining graph has no edges, 
or every vertex has degree at least 2. The second case cannot happen because otherwise n' ≤ m' which is 
a contradiction. In the first case, T cannot contain a cycle, because otherwise when we first delete an edge 
and one of its vertex in a cycle, the remaining object is no longer a graph. 

(c) implies (a): If there exists a vertex of degree 1 in T , we delete this vertex and the attached edge from 
'T . The remaining object T ' is still a graph with no cycles and m = n' − 1. Note that if T is not connected, 

then T ' is not connected. We continue this process until the remaining graph has no edges, or every vertex 
has degree at least 2. The second case contradicts the claim because T has no cycles. In the first case, 
because the relation m = n − 1 is preserved, the remaining graph contains exactly one vertex and is thus 
connected. We conclude that T is connected. D 
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Exercise 1.4. Let T be a tree. A leaf is a vertex of degree 1.

(a) Prove that T contains a leaf.
(b) Prove that between any two vertices in T there is a unique simple path.
(c) Prove that T has at least 2 leaves.

Proof. Part (a) is established by the claim in the previous proof.
For (b), since T is connected and has no cycles, for vertices x and y in T , there is a simple path x ∼ x1 ∼

· · · ∼ xk ∼ y between them. Suppose there exists another simple path x ∼ y1 ∼ · · · ∼ ym ∼ y between them.
Then x ∼ x1 ∼ · · · ∼ xk ∼ y ∼ ym ∼ · · · ∼ y1 ∼ x contains a cycle, which is a contradiction.

For (c), let x0 be a leaf and x1 ∼ x0. Suppose we already have a simple path x0 ∼ · · · ∼ xi. If xi is
a leaf, then we are done; otherwise, there exists xi+1 = xi 1 such that xi ∼ xi+1. Since T has no cycles,−
xi+1 ∈/ {x0, . . . , xi}. The process must end because T is finite, so we will eventually find another leaf xi. �

Exercise 1.11. Here we outline another proof, more analytic, of the existence of stationary distributions.
Let P be the transition matrix of a Markov chain on a finite state space Ω. For an arbitrary initial distribution
µ on Ω and n > 0, define the distribution νn by

1
νn = (µ+ µP +

n
· · ·+ µPn−1).

(a) Show that for any x ∈ Ω and n > 0,

2|νnP (x)− νn(x)| ≤ .
n

(b) Show that there exists a subsequence (νnk
)k 0 such that limk νnk

(x) exists for every x≥ →∞ ∈ Ω.
(c) For x ∈ Ω, define ν(x) = limk νnk

(x). Show that ν is a stationary distribution for P .→∞

Proof. (a). We have

1|νnP (x)− ν 2
n(x)| ≤ |µP (x) + µP (x) + · · ·+ µPn(x)− µ(x)

n
− µP (x)− · · · − µPn−1(x)|

1
= |µPn 2

(x) .
n

− µ(x)| ≤
n

(b). Since ν ∈ [0, 1]|Ωn
| which is compact, there exists a subsequence (νnk

)k≥0 which converges at every
x ∈ Ω.

Ω
(c). Since the set of probability distribution {(a1, . . . , a

Ω
|Ω ) |
| ∈ R| :

limit ν is a probability distribution. Moreover, Part (a) tells us that for

∑| |
i=1 ai = 1, ai ≥ 0} is closed, the

every x ∈ Ω,

2|νP (x)− ν(x)| = lim
k→∞

|νnk
P (x)− νnk

(x)| ≤ lim = 0.
k→∞ nk

Therefore, ν is stationary. �

Exercise 2.10. (Reflection Principle). Let (Sn) be the sample random walk on Z. Show that

P( max
1≤j≤n

|Sj | ≥ c) ≤ 2P(|Sn| ≥ c).

Proof. If |Sj | = c for some j ≤ n, then by symmetry Sn ≥ c with probability at least 1/2. Therefore,

1
P( max |Sj | ≥ c) ≤ P(|Sn| ≥ c),

2 1≤j≤n

so the conclusion follows. �
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