
18.445 HOMEWORK 2 SOLUTIONS 

Exercise 4.2. Let (an) be a bounded sequence. If, for a sequence of integers (nk) satisfying 

nk
lim = 1, 
k→∞ nk+1 

we have 
a1 + · · · + anklim = a, 

k→∞ nk 

then 
a1 + · · · + an

lim = a. 
n→∞ n 

Proof. For nk ≤ n < nk+1, we can write 

a1 + · · · + an a1 + · · · + ank ank+1 + · · · + an 
= + 

n n n 
a1 + · · · + ank nk ank +1 + · · · + an n − nk 

= + . (1) 
nk n n − nk n 

As n → ∞ and k → ∞, by assumption 

a1 + · · · + ank → a. (2) 
nk 

Since nk ≤ nk ≤ 1 and nk → 1, we have n
 

nk
 

nk+1 nk+1 

→ 1. (3) 
n 

It follows that 
n − nk → 0. (4) 

n 

Also, (an) is bounded, so there exists constant C > 0 such that 

ank +1 + · · · + an| | ≤ C. (5) 
n − nk 

Combining (2), (3), (4) and (5), we conclude that the formula in (1) converges to a as n → ∞. D 

Exercise 4.3. Let P be the transition matrix of a Markov chain with state space Ω and let µ and ν be any 
two distributions on Ω. Prove that 

IµP − νP ITV ≤ Iµ − νITV. 

(This in particular shows that IµP t+1 − πITV ≤ IµP t − πITV, that is, advancing the chain can only move 
it closer to stationary.) 
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Proof. We have  1 IµP − νP ITV = |µP (x) − νP (x)|
2

x∈Ω     1   
=  (µ(y) − ν(y))P (y, x) 

2
x∈Ω y∈Ω  1 ≤ P (y, x)|µ(y) − ν(y)|

2
x,y∈Ω   1 

= |µ(y) − ν(y)| P (y, x)
2

y∈Ω x∈Ω  1 
= |µ(y) − ν(y)|

2
y∈Ω 

= Iµ − νITV. 

D 

Exercise 4.4. Let P be he transition matrix of a Markov chain with stationary distribution π. Prove that 
for any t ≥ 0, 

d(t + 1) ≤ d(t), 

where d(t) is defined by (4.22). 

Proof. By Exercise 4.1 (see Page 329 of the book for its proof), 

d(t) = sup IµP t − πITV 
µ∈P 

where P is the set of probability distributions on Ω. By the remark in the statement of Exercise 4.3, 

IµP t+1 − πITV ≤ IµP t − πITV. 

Therefore, we have 
d(t + 1) ≤ d(t). 

D 

Exercise 5.1. A mild generalization of Theorem 5.2 can be used to give an alternative proof of the Con­
vergence Theorem. 

(a). Show that when (Xt, Yt) is a coupling satisfying (5.2) for which X0 ∼ µ and Y0 ∼ ν, then 

IµP t − νP tITV ≤ P[τcouple > t]. (6) 

Proof. Note that (Xt, Yt) is a coupling of µP t and νP t . By Proposition 4.7 and (5.2), 

IµP t − νP tITV ≤ Px,y[Xt  [τcouple > t].= Yt] = Px,y 

D 

(b). If in (a) we take ν = π, where π is the stationary distribution, then (by definition) πP t = π, and 
(6) bounds the difference between µP t and π. The only thing left to check is that there exists a coupling 
guaranteed to coalesce, that is, for which P[τcouple < ∞] = 1. Show that if the chains (Xt) and (Yt) are 
taken to be independent of one another, then they are assured to eventually meet. 

Proof. Since P is aperiodic and irreducible, by Proposition 1.7, there is an integer r such that P r(x, y) > 0 
for all x, y ∈ Ω. We can find ε > 0 such that ε < P r(x, y) for all x, y ∈ Ω. Hence for a fixed z ∈ Ω, wherever 
(Xt) and (Yt) start from, they meet at z after r steps with probability at least ε2 as they are independent. 
If they are not at z after r steps (which has probability at most 1 − ε2), then they meet at z after another 
r steps with probability at least ε2 . Hence they have not met at z after 2r steps with probability at most 
(1 − ε2)2 . Inductively, we see that (Xt) and (Yt) have not met at z after nr steps with probability at most 
(1−ε2)n . It follows that P[τcouple > nr] ≤ (1−ε2)n which goes to 0 as n → ∞. Thus P[τcouple < ∞] = 1. D 
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Exercise 5.3. Show that if X1, X2, . . . are independent and each have mean µ and if τ is a Z+-valued
random variable independent of all the Xi’s, then

τ

E[
∑

Xi] = µE[τ ].
i=1

Proof. Since τ is independent of (Xi),

τ

E[
∑ ∞ n

Xi] =
∑

P[τ = n]E[ Xi τ = n]
i=1 n=1

∑
i=1

|

∞

=
n

∑ n

P[τ = n] E[Xi]
=1

]
n

∑∞
∑
i=1

= P[τ = n nµ
=1

= µE[τ ].

�

Exercise 6.2. Consider the top-to-random shuffle. Show that the time until the card initially one card from
the bottom rises to the top, plus one more move, is a strong stationary time, and find its expectation.

Proof. Let this time be denoted by τ . We consider the top-to-random shuffle chain (Xt) as a random walk
on Sn. Let (Zt) be an i.i.d. sequence each having the uniform distribution on the locations to insert the
top card. Let f(Xt−1, Zt) be the function defined by inserting the top card of Xt at the the position−1

determined by Zt. Hence X0 and Xt = f(Xt 1, Zt) define the chain inductively.−
Note that τ = t if and only if there exists a subsequence Zt1 , . . . , Ztn−2 where t1 < · · · < tn−2 = t − 1

such that Zti chooses one of the bottom i+ 1 locations to insert the top card. Hence 1{τ=t is a function of}
(Z1, . . . , Zt), so τ is a stopping time for (Zt) . That is, τ is a randomized stopping time for (Xt).

Next, denote by C the card initially one card from the bottom. We show inductively that at a time t the
k! possible orderings of the k cards below C are equally likely. At the beginning, there is only the bottom
card below C. When we have k cards below C and insert a top card below C, since the insertion is uniformly
random, the possible orderings of the k+ 1 cards below C after insertion are equally likely. Therefore, when
C is at the top, the possible orderings of the remaining n − 1 cards are uniformly distributed. After we
make one more move, the order of all n cards is uniform over all possible arrangements. That is, Xτ has the
stationary distribution π. In particular, the above process shows that the distribution of Xτ is independent
of τ . Hence we conclude that τ is a strong stationary time.

Finally, we compute the expectation of τ . For 1 ≤ i ≤ n − 2, when C is i cards from the bottom, then
the probability that the top card is inserted below C is i+1 . Hence if τi denotes the time it takes forn C to
move from i cards from the bottom to i+ 1 cards from the bottom, then E[τi] = n . It is easily seen thati+1
τ = τ1 + · · ·+ τn 2 + 1, so−

n−2

E[τ ] = E[1 +
∑ n−2 n

n
−1

1
τi] = 1 +

∑
= n .

i+ 1
i=1 =1

∑
i+ 1

i i=1

�

Exercise 6.6. (Wald’s Identity). Let (Yt) be a sequence of independent and identically distributed random
variables such that E[|Yt|] <∞.

(a). Show that if τ is a random time so that the event {τ ≥ t} is independent of Yt and E[τ ] <∞, then

τ

E[
∑

Yt] = E[τ ]E[Y1]. (7)
t=1

τ
Hint: Write

∞
1t=1 Yt = t=1 Yt {τ≥t . First consider the case where Yt ≥ 0.}

∑ ∑
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Proof. Using the monotone convergence theorem and that {τ ≥ t} is independent of Yt, we see that

τ

E[
∑ ∞ ∞

|Y 1t|] =
∑

E[|Yt| τ t ] = E[ Y ] P[τ t] = E[ Y ]E[τ ] < .{ ≥ } 1

t

| 1

t=1 =1

|
∑
t=1

≥ | | ∞

Therefore, we can then apply the dominated convergence theorem to get that

τ

E[
∑ ∞

Yt] =
t=1

∑
E[Y 1t {τ≥t ] = E[Y} 1]

t=1

∑∞
P[τ

t=1

≥ t] = E[Y1]E[τ ].

�

(b). Let τ be a stopping time for the sequence (Yt). Show that {τ ≥ t} is independent of Yt, so (7) holds
provided that E[τ ] <∞.

Proof. Since τ is a stopping time, 1 τ t = 1 τ t 1 c is a function of Y , . . . , Y . Since Y is independent{ ≥ } { ≤ − } 0 t−1 t

of Y0, . . . , Yt 1, we conclude that {τ ≥ t} is independent of Y− t. �

Exercise 7.1. Let Xt = (X1
t , . . . , X

n
t ) be the position of the lazy random walker on the hypercube {0, 1}n,

jstarted at X0 = 1 = (1, . . . , 1). Show that the covariance between Xi
t and Xt is negative. Conclude that if

n
W (X i

t) =
∑
i=1Xt , then Var(W (Xt)) ≤ n/4.

Hint: It may be easier to consider the variables Y it = 2Xi
t − 1.

j j jProof. Let Y i i
t = 2Xt − 1. Then Cov(Y it , Yt ) = 4 Cov(Xi

t , Xt ), so it suffices to show that Cov(Y it , Yt ) < 0
for i = j and t > 0. If the ith coordinate is chosen in the first t steps, then the conditional expectation of
Y it is 0. Hence

1 j 2
E[Y it ] = (1− )t and E[Y it Yt ] = (1

n
− )t.
n

It follows that for t > 0,

Cov(Y i j
t , Yt ) = E[Y i j

t Yt ]− E[Y i j 2 1
t ]E[Yt ] = (1− )t − (1− )2t < 0.

n n

On the other hand,

4 Var(Xi
t) = Var(Y i

1
t ) = E[(Y i 2

t ) ]− E[Y it ]2 = 1− (1− )2t

n
≤ 1.

Therefore,

n n

Var(W (Xt)) = Var(
∑

Xi
t) =

∑
Var(Xi i j n

t) +
i i=1

∑
Cov(Xt , Xt ) .

4
=1 i=j

≤

�

Exercise 7.2. Show that Q(S, Sc) = Q(Sc, S) for any S ⊂ Ω. (This is easy in the reversible case, but holds
generally.)

6

6
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Proof. We have

Q(S, Sc) =
∑ ∑

π(x)P (x, y)
x∈S y∈Sc

=
∑ (∑

π(x)P (x, y)−
∑

π(x)P (x, y)
y∑∈Sc x∈Ω x∈Sc

)
=

∑
π(x)P (x, y)− π(x) P (x, y)

y∑∈Sc x∈Ω x

∑
∈Sc y

∑
∈Sc

= π(y)
y Sc

− (
∈ x

∑
π x)

∈Sc

(
1−

y

∑
P (x, y)

∑ ∈S

)
= π(y)
y∈Sc

− π(x) + π(x)P (x, y)

∑ ∑ x

∑
∈Sc x

∑
∈Sc y

∑
∈S

= π(x)P (x, y)
x∈Sc y∈S

= Q(Sc, S).

�

5



MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/

	Exercise 4.2
	Exercise 4.3
	Exercise 4.4
	Exercise 5.1
	Exercise 5.3
	Exercise 6.2
	Exercise 6.6
	Exercise 7.1
	Exercise 7.2

