
18.445 HOMEWORK 3 SOLUTIONS 

Exercise 9.2. An Oregon professor has n umbrellas, of which initially k ∈ (0, n) are at his office and n − k 
are at his home. Every day, the professor walks to the office in the morning and returns home in the evening. 
In each trip, he takes and umbrella with him only if it is raining. Assume that in every trip between home 
and office or back, the chance of rain is p ∈ (0, 1), independently of other trips. 

(a). Asymptotically, in what fraction of his trips does the professor get wet? 

Proof. First, we identify a Markov chain with 2n + 2 states. For i ∈ [0, n], let x2i+1 denote the state that 
the professor is at home and there are i umbrellas at home and n − i umbrellas at the office; let x2i+2 denote 
the state that the professor is at the office and there are i umbrellas at home and n − i umbrellas at the 
office. Then the transition matrix of the Markov chain is defined by 

Pj,k = 0 if j = k or |j − k| > 1 for j, k ∈ [1, 2n + 2],
 

P1,2 = P2n+2,2n+1 = 1,
 

P2i+1,2i = P2i,2i+1 = p for i ∈ [1, n],
 

P2i+1,2i+2 = P2i+2,2i+1 = 1 − p for i ∈ [0, n].
 

The following diagram gives an intuition of the chain: 

1 p 1−p p 1−p p 1−p
x1 −−�−−� x2 −−�−−� x3 −−�−−� x4 −−�−−� · · · · · · −−�−−� x2n −−�−−� x2n+1 −−�−−� x2n+2. 

1−p p 1−p p 1−p p 1 

To find a stationary distribution π, we need πP = π. It is easy to observe that π(x1) = π(x2n+2) = a and 
π(xj ) = b for j ∈ [2, 2n + 1], where a and b satisfy a = b(1 − p) and 2a + 2nb = 1. Hence 

1 − p 1 
π(x1) = π(x2n+2) = and π(xj ) = for j ∈ [2, 2n + 1]. 

2 − 2p + 2n 2 − 2p + 2n 

Since the professor gets wet when it is raining and the chain moves from x1 to x2 or from x2n+2 to x2n+1, 
we conclude that asymptotically this probability is 

2p(1 − p)
pπ(x1) + pπ(x2n+2) = . 

2 − 2p + 2n 

D 

(b). Determine the expected number of trips until all n umbrellas are at the same location. 

Proof. Note that all n umbrellas are at the same location if and only if the chain is at x1, x2, x2n+1 or x2n+2. 
Since the chain can only move from xi to xi−1 or xi+1 in one step, if it starts at xj where j ∈ [3, 2n], we 
need to compute the expectation of the hitting time τj of {x2, x2n+1}. 

Let aj = E[τj ]. Then a2 = a2n+1 = 0, and by symmetry an+1 = an+2. It is easily seen that for i ∈ [3, n+1], 

ai = 1 + pai−1 + (1 − p)ai+1 if i is odd, (1) 

ai = 1 + (1 − p)ai−1 + pai+1 if i is even. (2) 
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If n is odd, since an+1 = an+2, then (2) applied to n + 1 gives (1 − p)an+1 = 1 + (1 − p)an. Thus (1) 
applied to n gives pan = 2 + pan−1. Proceeding backward inductively, we see that 

(1 − p)an+1 = 1 + (1 − p)an, 

pan = 2 + pan−1, 

(1 − p)an−1 = 3 + (1 − p)an−2, 

pan−2 = 4 + pan−3, 

. . . 

(1 − p)a4 = n − 2 + (1 − p)a3, 

pa3 = n − 1 + pa2. 

On the other hand, if n is odd, then similarly we have 

pan+1 = 1 + pan, 

(1 − p)an = 2 + (1 − p)an−1, 

. . . 

(1 − p)a4 = n − 2 + (1 − p)a3, 

pa3 = n − 1 + pa2. 

n−1Since a2 = 0, a3 = p . Inductively we can solve for all ai for i ∈ [2, 2n + 2] using the above relation and 
symmetry. In particular, if the professor is at home with n − k umbrellas at home and k umbrellas at the 
office, then the chain starts at x2n−2k+1. If k ≥ n/2, then using the above relation, 

n − 1 n − 2 n − 3 2k − n + 1 k(n − k) k(n − k − 1)
E[τ2n−2k+1] = a2n−2k+1 = + + + · · · + = + . 

p 1 − p p p p 1 − p 

If k < n/2, then by symmetry a2n−2k+1 = a2k+2, so 

n − 1 n − 2 n − 3 n − 2k k(n − k) k(k − n − 1)
E[τ2n−2k+1] = a2k+2 = + + + · · · + = + 

p 1 − p p 1 − p p 1 − p 

which is the same formula. We conclude that the expected number of trips until all n umbrellas are at the 
same location is 

k(n − k) k(k − n − 1)
+ . 

p 1 − p 

D 

(c). Determine the expected number of trips until the professor gets wet. 

k(n−k) k(k−n−1)Proof. Denote the expectation from Part (b) by c = + . The professor gets wet if it is raining p 1−p 
and the chain moves from x1 to x2 or from x2n+2 to x2n+1. This happens only after the chain gets to x2 or 
x2n+1, so we can compute the expectation assuming that the chain starts at x2 or x2n+1 and then add c. 

Let a be the expected number of trips until the professor gets wet when the chain starts at x2. Let b 
n−1be the expected number when the chain starts at x1. Recall that a3 = p from Part (b). Then one-step 

analysis starting from x2 and x1 gives a = 1+(1 − p)b +p(a3 + a) and b = 1+(1−p)a respectively. Therefore 
n+1−pa = We conclude that the expected total number of trips until the professor gets wet is p(1−p) . 

k(n − k) k(k − n − 1) n + 1 − p
+ + . 

p 1 − p p(1 − p) 

D 
2 



Exercise 9.4. Let θ be a flow from a to z which satisfies both the cycle law and 1θ1 = 1I1. Define a 
function h on nodes by 

m

h(x) = 
 

[θ(eei) − I(eei)]r(eei), 
i=1 

where ee1, . . . , eem is an arbitrary path from a to x. 

(a). Show that h is well-defined and harmonic at all nodes. 

Proof. Let ef1, . . . , efn be another path from a to x. Then it differs from ee1, . . . , eem by cycles in the sense 
that for some 1 ≤ i ≤ j ≤ m and 1 ≤ e e ek ≤ l ≤ n, eei, eei+1, . . . , eej , −f l, −f l 1, . . . , −fk form a cycle (there −
may be more than one cycles). By the cycle law, the function [θ(·) − I(·)]r(·) sums to zero over such a 
cycle. Therefore if we replace eei, eei+1, . . . , eej by e e . . efk, fk+1, . , fl, the value of h does not change. Inductively 
replacing all cycles, we see that h takes the same value for all arbitrary paths from a to x. Thus h is 
well-defined. 

Moreover, for y ∼ x, let eey denote the edge from x to y. We can write h(y) = h(x) + [θ(eey) − I(eey )]r(eey ). 
Therefore,  c(x, y)

P (x, y)h(y) =
 

h(y) 
c(x)

y∼x y∼x  c(x, y) 
=

 
h(x) + [θ(eey) − I(eey)]r(eey)

c(x)
y∼x 

1 

 
= h(x) + 

 
[θ(eey) − I(eey)] 

c(x)
y∼x 

1 
= h(x) + [div θ(x)  div I(x)] 

c(x) 
−

= h(x) 

ffor x ∈/ {a, z} by the node law and for x = a by 1θ1 = 1I1. The formula also holds for x = z because  
x V div θ(x) = 0 for any flow so that div θ(z) − div I(z) = 0. Thus h is harmonic at all nodes. D ∈

(b). Use Part (a) to give an alternative proof of Proposition 9.4. 

Proof. Trivially h(a) = 0, so h ≡ 0 is the unique harmonic extension. We conclude that θ = I. D 

Exercise 9.5. Show that if, in a network with source a and sink z, vertices with different voltages are glued 
together, then the effective resistance from a to z will strictly decrease. 

Proof. By gluing vertices with different voltages, we change the old voltage W1 to a different new voltage 
W2 on the network. Let I1 and I2 be the unit current flows corresponding to W1 and W2 respectively. Then 
I1 and I2 are necessarily different. By Thomson’s Principle, the old effective resistance is E(I1) and the new 
effective resistance is E(I2) = inf unit flow θ  E(θ) where I2 is the unique minimizer. However, I1 is still a unit { }
flow in the network, so the effective resistance decreases strictly. D 

Exercise 9.6. Show that R(a ↔ z) is a concave function of {r(e)}. 

Proof. Consider two sets of resistors {r(e)} and {r'(e)}. Let R(a ↔ z) and R'(a ↔ z) denote their effective 
resistance respectively. For s ∈ [0, 1], define Rs(a ↔ z) to be the effective resistance of {sr(e) + (1 − s)r'(e)}
(the resistance of e is sr(e) + (1 − s)r'(e)). Let θ range over arbitrary unit flows from a to z. By Thomson’s 
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Principle,

Rs(a↔ z) = inf
θ
Es(θ)

= inf
∑

θ(e)2[sr(e) + (1
θ

e

− s)r′(e)]

≥ s inf
∑

θ(e)2r(e) + (1− s) inf θ(e)2r′(e)
θ θ

e e

= s inf E(θ) + (1− s) inf ′

∑
θ θ

E (θ)

= sR(a↔ z) + (1− s)R′(a↔ z).

This proves that R(a↔ z) is a concave function of {r(e)}. �

Exercise 10.1. Prove Lemma 10.5 by copying the proof in Proposition 1.14 that π̃ as defined in (1.19)
satisfies π̃ = π̃P , substituting Gτ (a, x) in place of π̃(x).

Proof. Since τ is a stopping time, τ > t is determined by X0, . . . , Xt and thus independent of Xt+1. Hence∑ ∞

Gτ (a, x)P (x, y) =
∑∑

Pa[Xt = x, τ > t]P (x, y)
x∈Ω x t=0

∞

=
∑∑

Pa[Xt = x,Xt+1 = y, τ > t]
t=0 x

∞

=
∑

Pa[Xt = y, τ > t 1]
t=1

−

∞

=
∑ ∞

Pa[Xt = y, τ > t]− Pa[X0 = y, τ > 0] +
t=0

∑
Pa[Xt = y, τ = t]

t=1

= Gτ (a, y)− Pa[X0 = y] + Pa[Xτ = y]

= Gτ (a, y)

where the last equality holds because if y = a then the last two terms are both 1 and if y = a the last two
terms are both 0. This establishes the stationarity. Since∑ ∞

Gτ (a, ) =
∑∑∞

x Pa[Xt = x, τ > t] = >
x x =0

∑
Pa[τ t] = Ea[τ ],

t t=0

we normalize G(a, x) to get the stationary distribution

Gτ (a, x)
π(x) = .

Ea(τ)

�

Exercise 10.3. Let G be a connected graph on at least 3 vertices in which the vertex v has only one
neighbor, namely w. Show that for the simple random walk on G, Evτw = Ewτv.

Proof. Since G has at least 3 vertices and v only has one neighbor, w must have a neighbor u different from
v. We have Evτw = 1 and

E
E uτv 2
wτv ≥ 1 + 1 + > 1,

deg(w)
≥

deg(w)

so they are not equal. �

Exercise 10.4. Consider simple random walk on the binary tree of depth k with n = 2k+1−1 vertices (first
defined in Section 5.3.4).

6
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(a). Let a and b be two vertices at level m whose most recent common ancestor c is at level h < m. Show
that Eaτb = Eaτa,c and find its value.

Proof. Since the random walk starting from a must visit c before visiting b, we have Eaτb = Eaτc+Ecτb. On
the other hand, Eaτa,c = Eaτc +Ecτa by the Commute Time Identity. Moreover, Ecτa = Ecτb by symmetry.
We conclude that Eaτb = Eaτa,c.

If we assume that the tree has unit resistance on each edge, then c = 2+3(2k−2)+2k k
G = 2 +2−4 = 2n−2.

By Example 9.7, R(a ↔ c) is the length of the path joining a and c, i.e. m − h in this case. Hence the
Commuter Time Identity implies that

Eaτb = Eaτa,c = cGR(a↔ c) = (2n− 2)(m− h).

�

(b). Show that the maximal value of Eaτb is achieved when a and b are leaves whose most recent common
ancestor is the root of the tree.

Proof. First, if a and b are at different levels, we may assume without loss of generality that a is at level m
and b is at level h where m > h. Let d be a descendant of b at level m. Then any random walk starting
from a must visit b before visiting d, so Eaτb ≤ Eaτd. Hence to achieve the maximal value of Eaτb, we may
assume that a and b are at the same level. In this case, the result of Part (a) implies that the maximum
(2n− 2)m is achieved when the most common ancestor c is the root of the tree. �

Exercise 21.1. Use the Strong Law of Large Numbers to give a proof that the biased random walk in
Example 21.2 is transient.

t
Proof. Suppose the chain starts at X0 = x and Xt = x + s=1 Ys where Ys are i.i.d. and Ys = −1 with
probability q and Ys = 1 with probability p. The Strong Law

∑
of Large Numbers implies that a.s.

Xt
lim = E[Ys] = p
t→∞ t

− q > 0.

Hence a.s. Xt > t(p − q)/2 for t sufficiently large, so a.s. the random walk only visits any fixed state y
finitely many times. Since the number of visits to y is a geometric variable with parameter Px[τy =∞], this
quantity is positive. Hence Proposition 21.3 implies that Px[τ+

x <∞] < 1, i.e. the chain is transient. �

Exercise 21.2. Suppose that P is irreducible. Show that if π = πP for a probability distribution π, then
π(x) > 0 for all x ∈ Ω.

Proof. Suppose π(x) = 0 for some state x ∈ Ω. Then

0 = π(x) =
y

so each term on the right-hand side is 0. Since the

∑
π(y)P (y, x), (3)

∈Ω

chain is irreducible, for each y there exists a sequence
z0 = y, z1, . . . , zn = x such that P (zi−1, zi) > 0 for i ∈ [1, n]. Thus π(zn )−1 = 0 by (3). Replacing x with
zn 1 in (3), we see that π(zn 2) = 0. Inductively, π(zi) = 0 for all i ∈ [0, n] and in particular π(y) = 0. This− −
is absurd as y is arbitrary, so π(x) > 0 for all x ∈ Ω. �

˜Exercise 21.5. Let P be an irreducible and aperiodic transition matrix on Ω. Let P be the matrix on Ω×Ω
defined by

P̃ ((x, y), (z, w)) = P (x, z)P (y, w), (x, y) ∈ Ω× Ω, (z, w) ∈ Ω× Ω.

˜Show that P is irreducible.

Proof. Let Axy = {t : P t(x, y) > 0}. Since P is irreducible, Axy is not empty. Since P is aperiodic,
gcd(Axx) = 1. Because Axx is closed under addition, there exists tx such that t ∈ Axx for t ≥ tx.

Choose s so that P s(x, y) > 0. Then P t+s(x, y) ≥ P t(x, x)P s(x, y) > 0 for t ≥ tx. Hence t ∈ Axy for all
t ≥ txy := tx + s. Therefore, for t ≥ txz ∨ tyw,

P̃ t((x, y), (z, w)) = P t(x, z)P t(y, w) > 0,

˜so P is irreducible. �
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Exercise 21.8. Let P be the transition matrix for simple random walk on Z. Show that the walk is not 
positive recurrent by showing there are no probability distributions π on Z satisfying πP = π. 

Proof. Theorem 21.12 gives the equivalence of positive recurrence and the existence of a stationary distri­
bution, so it suffices to show that there does not exist a stationary distribution. 

Suppose there exists π such that π = πP . For any n ∈ Z, 
1 1 

π(n) = π(n − 1) + π(n + 1),
2 2 

so π(n) − π(n − 1) = π(n + 1) − π(n). If this difference is zero, then π(n) is constant, which cannot be 
true as there are infinitely many states; if the difference is not zero, then π is not bounded, which is again a 
contradiction. D 
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