18.445 HOMEWORK 4 SOLUTIONS

Exercise 1. Let X,Y be two random variables on (2, F,P). Let A C F be a sub-c-algebra. The random
variables X and Y are said to be independent conditionally on A is for every non-negative measurable
functions f, g, we have

E[f(X)g(Y) | A] = E[f(X) | A] x Elg(Y) | A] a.s.

Show that X,Y are independent conditionally on A is and only if for every non-negative A-measurable
random variable Z, and every non-negative measurable functions f, g, we have

E[f(X)g(Y)Z] = E[f(X)ZElg(Y) | A]]
Proof. If X and Y are independent conditionally on A and Z is A-measurable, then
E[f(X)g(¥)2) = E[E[f(X)g(¥)Z | A]
— E[E[/(X)g(Y) | A1Z]
— E[E[f(X) | AE[g(Y) | A1Z]
- E[f(X oY) | A)Z | A]]
—E[/(X)ZE[g(Y) | A]].

Conversely, if this equality holds for every nonnegative A-measurable Z, then in particular, for every
A€ A,

ELf(X)g(Y)La] = E[f(X)Elg(Y) | AlL4).
It follows from the definition of conditional expectation that
E[f(X)g(¥) | A = E[f(X)E[g(¥) | A]| A] = E[f(¥) | AE[g(Y)| A}
so X and Y are independent conditionally on A. O

Exercise 2. Let X = (X,)n,>0 be a martingale.
(1). Suppose that T is a stopping time, show that X7 is also a martingale. In particular, E[X7,] = E[Xo].

Proof. Since X is a martingale, first we have

E[|XT|] < E[max|X ] < ZE 1X3]] <
i=1
Moreover, for every n > m,
]E[X;l; |]:’ﬂ*1] = E[XT 1 + (Xn - anl)]]-T>n71 |]:n71]
E[XT ] + ]1T>n—1E[Xn —Xn_1 Ifn—l]
=E[X_].

We conclude that X7 is a martingale. O
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(2). Suppose that S < T are bounded stopping times, show that E[Xr |Fs] = Xg,a.s. In particular,
E[X7] = E[X5s].

Proof. Suppose S and T are bounded by a constant N € N. For A € Fg,
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SO ]E[XN |f5] = Xs. Similarly, E[XN |-7:T} = XT. We conclude that
E[Xr | Fs] = E[E[Xn | Fr] | Fs| = E[Xn | Fs] = Xs.
O

(3). Suppose that there exists an integrable random variable Y such that |X,| <Y for all n, and T is a
stopping time which is finite a.s., show that E[Xr] = E[X].

Proof. Since | X,,| <Y for all n and T is finite a.s., | X,ar| < Y. Then the dominated convergence theorem
implies that

lim E[X, 7] = E[ lim X,nr] = E[X7].

n—oo n— oo
As n AT is a bounded stopping time, Part (2) implies that E[X,,o7] = E[X]. Hence we conclude that
E[X7] = E[Xy). O
(4). Suppose that X has bounded increments, i.e. IM > 0 such that | X,y — X,,| < M for all n, and T is
a stopping time with E[T] < oo, show that E[X7] = E[X,].

Proof. We can write E[X7] = E[X,] + E[Zle(Xi — X;_1)], so it suffices to show that the last term is zero.
Note that

T
EIS (X - Xion)l] E[Y 1X, — Xioal] < ME[T] < ox.
i=1 i=1
Then the dominated convergence theorem implies that

E[Z(Xi - Xi1)] = E[Z(Xi — Xi—1)1r>i]

o

E[(X; — Xi—1)1r>4]
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.
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where we used that X; — X;_; is independent of {T' > i} = {T' < i — 1} as T is a stopping time of the
martingale X. O

Exercise 3. Let X = (X,,)n>0 be Gambler’s ruin with state space ! = {0,1,2,..., N}:
Xo=k, PXpt1=Xn+1|X,]=PXpy1=X,—-1|X,]=1/2, 7=min{n: X, =0or N}.



(1). Show that Y = (Y,, := X2 — n),>o is a martingale.
Proof. By the definition of X,
E[Y, | Foo1] = E[X2 —n| Fpoi]
=E[(X;, — Xn-1)? +2(Xp — Xp—1)Xno1 + X2 — 1| Fred]
=E[(Xp — Xn-1)?| Xn-1] + 2E[X,, — Xppo1 | Xp1] X1 + X2 —
= 1+O+Xn 1—n=Yy_1,
so Y is a martingale. O

(2). Show that Y has bounded increments.

Proof. 1t is clear that

|Yn _Yn—1| = |X2 X72z 1= 1‘

<X+ X || X — X1 + 1
<N Xpo1| 14 Xpo1]+ 1

< 2N +2,

so Y has bounded increments. O
(8). Show that E[r] < oo

Proof. First, let a be the probability that the chain increases for N consecutive steps, i.e.
a=PXi1 - Xi=1, X0 - X1 =1,..., Xsynv — Xiyn_1 = 1]

which is positive and does not depend on . If 7 > mV, then the chain never increases N times consecutively
in the first mN steps. In particular,

m—1

{r>mN}C () {Xivg1 = Xiv =1, Xing2 — Xingr = Lo, Xingn — Xingpnvo1 = 135
i=0

Since the events on the right-hand side are independent and each have probability 1 — a < 1,
Plr >mN] < (1—a)™
For mN <1< (m+1)N, P[r > 1] <P[r > mN], so

Z]P’T>Z<ZNIP’T>mN ilfa
=0 m=0 m=0

(4). Show that E[r] = k(N — k).
Proof. Since E[X,,11 — X, | Fn] =0 and | X, 11 — X,,| = 1, X is a martingale with bounded increments. We
also showed that Y is a martingale with bounded increments. As E[7] < oo, Exercise 2 Part (4) implies that
kE=E[Xo] =E[X,;]=PX;=0]-0+P[X,=N|-N (1)
and k* = E[Yy] = E[Y,] = E[X?] — E[7]. (2)

Then (1) gives, P[X; = N] = k/N. Hence it follows from (2) that
E[r] = E[X2] - k* =P[X, =0]- 0+ P[X, = N]- N? —k* = kN — k* = k(N — k).

Exercise 4. Let X = (X,,)n>0 be the simple random walk on Z.



(1). Show that (Y, := X3 — 3nX,,),>0 is a martingale.

Proof. We have

[
=E[X2 -3nX, - X2, +3(n—1)X,_1| Fni]
=E[(Xp — Xn 1) +3(X — X0 1)2 X1 +3(Xn — X 1) X2 —30(X, — Xpi1) = 33X 1 | Fri]
=E[(X, — X 1)?] +3E[( X, — X0 1)3] X1 +3E[X, — X, 1]X2 | —3nE[X, — X,,_1] — 3X,, 1
=0+3X,,1+0-0-3X,_;
=0,
so Y is a martingale. O

(2). Let 7 be the first time that the walker hits either 0 or N. Show that, for 0 < k < N, we have

N2 — 2
Eulr| X, = N = ——.

Proof. Since 0 < X7 < N, the martingale Y7 is bounded and thus has bounded increments. The stopping
time 7 is the same as in Exercise 3, so the same argument implies that

k* = E[Yy] = E[Y;] = E[X?] - 3E[r X,].
We compute that E[X3] = P[X, = 0] -0+ P[X, = N]- N®> = kN?. Hence

EN? — k3
3
We conclude that

=E[rX,] =P[X, =0]-0+P[X, = N]-E[rN | X, = N] = kE[r | X, = N].

N2—k2

E[r| X, = N] = —

Exercise 5. Let (Q, F,P) be a probability space with filtration (F,,)n>0-

(1). For any m,m’ > n and A € F,,, show that T'=ml4 + m'l 4c is a stopping time.

Proof. Assume without loss of generality that m < m’ (since we can flip the roles of A and A¢). If | < m,
then {T <} =0 F. Im<il<m then{T <} =AecF,CFan<m<I Ifl>m, then
{T <1} =Q € F;. Hence T is a stopping time. a

(2). Show that an adapted process (X,)n>0 is a martingale if and only if it is integrable, and for every
bounded stopping time T', we have E[X7] = E[X].

Proof. The “only if” part was proved in Exercise 2 Part (2) with S = 0.

Conversely, suppose for every bounded stopping time 7', we have E[X 7] = E[X,]. In particular, E[X,,] =
E[Xo] for every m € N. Moreover, for n < m and A € F,, Part (1) implies that T = nlg + ml4. is a
bounded stopping time. Thus

E[Xm] = E[Xo] = E[X7] = E[Xn1a + Xm1ac],
so E[X,,14] = E[X,,14]. By definition, this means E[X,, | F,,] = X,, so X is a martingale. O

Exercise 6. Let X = (X,,),>0 be a martingale in L%



(1). Show that its increments (X, +1 — X, )n>0 are pairwise orthogonal, i.e. for all n # m, we have
E[(Xnt1 = Xo)(Xmp1 — Xin)] = 0.
Proof. First, note that for any n < m,
E[XnXpn] = E[E[XoXon | Fal| = E|XoE[X | Fl| = EIX2].
Now assume without loss of generality that n < m. Then
E[(Xn41 = Xn) (X1 = Xon)] = E[ X1 X 1] = E[X0 X 1] = E[Xp 1 Xon] + E[X, X

=E[X: 4] - E[X7] - E[X; 4] + E[X7] = 0.
(Il
(2). Show that X is bounded in L? if and only if
ZE n+l — )2] < 00.
n>0
Proof. Note that
E[Xo(Xpnt1 — Xn)] =E[X3] - E[XZ] =0
by the computation in Part (1). Thus for any m, we have
m—1
2
E[X2] = [ Xo + Z ol — } —EX+ S E[(Xnt1 — X))
n=0
where the cross terms disappear by Part (1). Therefore,
sup B[X7,] = B[X3] + Y E[(Xni1 — Xa)?). (3)

mz0 n>0

If X is bounded in L2, i.e. the left-hand side in (3) is bounded, then the sum on the right-hand side is
bounded. Conversely, if the sum is bounded, since X is in L2, the left-hand side is also bounded. O
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