
18.445 HOMEWORK 5 SOLUTIONS 

Exercise 1. If X ∈ L1(Ω, F , P), show that the class 

{E[X | A] : A sub σ-algebra of F} 

is Uniformly Integrable. 

(1). Show that, for any E > 0, there exists δ > 0 such that 

E[|X|1A] ≤ E, whenever P[A] ≤ δ. 

Proof. Suppose the converse holds. Then for some ε > 0 there exists Ak ⊂ Ω for each k such that P[Ak] ≤ 2−ke 
and E[|X|JAk ] ≥ ε. Since k P[Ak] < ∞, the Borel-Cantelli lemma shows that E[lim supk JAk ] = 0. Since 
X ∈ L1 , E[lim supk |X|JAk ] = 0. Hence Fatou’s lemma implies that 

0 = E[lim sup |X|JAk ] ≥ lim sup E[|X|JAk ] ≥ ε 
k k 

which is a contradiction. D 

(2). Show the conclusion. 

Proof. Fix ε > 0. Choose δ > 0 which satisfies the condition in Part (1). For any A ⊂ F , Chebyshev’s 
inequality and Jensen’s inequality imply that           1  1

P  E[X | A] ≥ C ≤ E  E[X | A]
  ≤ E[|X|]. 

C C      
Since X ∈ L1, we can choose C large enough so that P  E[X | A]

  ≥ C ≤ δ. Then it follows from Part (1) 

and Jensen’s inequality that         E  E[X | A] J{|E[X | A]|≥C} ≤ E |X|J{|E[X | A]|≥C} ≤ ε. 

Therefore E[X | A] is uniformly integrable. D 

Exercise 2. Customers arrive in a supermarket as a Poisson process with intensity N . There are N aisles 
in the supermarket and each customer selects one of them at random, independently of the other customers. 
Let Xt

N denote the proportion of aisles which remain empty by time t. Show that 

−tXN → e , in probability as N → ∞.t 

Proof. First, consider the simplified scenario where m people selects one of N aisles at random. Let X = 
X(m) denote the number of empty aisles. Let Xi = 1 if the i-th aisle is empty and Xi = 0 otherwise. Note eN
that the probability that the i-th aisle is empty is E[Xi] = (1 − 1/N)m . Since X = Xi, we have i=1 

NN 1
E[X] = E[Xi] = N(1 − )m . (1)

N 
i=1 

Moreover, for i  .= j, the probability that both the i-th and the j-th aisles are empty is E[XiXj ] = (1−2/N)m 

Hence 
N NN N N 

E[X2] = E[( Xi)
2] = E[Xi 

2] + E[XiXj ] = N(1 − 
1
)m + N(N − 1)(1 − 

2
)m . (2)

N N 
i=1 i=1 ii=j 
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Next, if the customers arrive as a Poisson process with intensity N , then at time t the number of customers
M has a Poisson distribution with intensity Nt, i.e.

e−Nt(Nt)m
P[M = m] = .

m!

Let Y denote the number of empty aisles at time t. Then E[Y |M = m] = X(m) = X and by (1),

∞

E[Y ] =
∑

P[M = m]E[Y |M = m]
m=0

∞

=
∑ e−Nt(Nt)m 1

N(1 )
m!

m=0

− m

N

∞

= e−NtN
∑ tm(N − 1)m

m!
m=0

= e−NtNet(N−1) = Ne−t.

If XN
t denotes the proportion of empty aisles, then

Y
E[XN

t ] = E[ ] = e−t. (3)
N

Moreover, E[Y 2 |M = m] = X(m)2 = X2 and by (2),

∞

E[Y 2] =
m

∑
P[M = m]E[Y 2

=0

|M = m]

∑∞ e−Nt(Nt)m 1 m 2
= [N(1 )

m!
m=0

− +N(N − 1)(1
N

− )m]
N

∞
tm(N 2)m

= Ne−t + e−NtN(N − 1)
−
m!

m

=

∑
=0

Ne−t + e−NtN(N − 1)et(N−2)

= Ne−t +N(N − 1)e−2t.

It follows that

Var[Y ] = E[Y 2]− E[Y ]2 = Ne−t +N(N − 1)e−2t −N2e−2t = Ne−t −Ne−2t,

so
1 1

Var[XN
t ] = Var[Y ] = (e−t − e−2t). (4)

N2 N

Finally, we deduce from Chebyshev’s inequality and (4) that

P[|XN 1
t − [XN 1

E t ]| 2
> ε] ≤

ε2
E XN

t − E[XN
t ] = Var[XN

ε2 t ] −→ 0

as N

[∣ ∣ ]
→∞. This together with (3) implies that X

∣
N t
t → E[XN

t ] =

∣
e− in probability. �

Exercise 3. Let T1, T2, ... be independent exponential random variables of parameter λ.

n
(1). For all n ≥ 1, the sum S =

∑
i=1 Ti has the probability density function

λnxn−1
fS(x) = e−λx, x > 0.

(n− 1)!

This is called the Gamma(n, λ) distribution.
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en
Proof. We prove this by induction. The case n = 1 is obvious. Suppose S = Ti has the stated density i=1 
function. Then the density of S + Tn+1 is the convolution  

λn n−1 λn+1 x λn+1 
−λy −λx −λx ny
e · λe−λ(x−y) dy = e y n−1 dy = e x . 

{y≥0, (n − 1)! (n − 1)! n!0 
x−y≥0} 

This completes the induction. D 

(2). Let N be an independent geometric random variable with 

P[N = n] = β(1 − β)n−1 , n = 1, 2, .... eN
Show that T = Ti has exponential distribution of parameter λβ.i=1 en
Proof. To sample T , it is equivalent to sample Ti with probability β(1 − β)n−1 . Since the density of i=1en 

Ti was established in Part (1), we can compute the density of T :i=1 

∞ ∞N λn n−1 Nx [λ(1 − β)x]n−1 
−λxβ(1 − β)n−1 e = λβe−λx 

(n − 1)! (n − 1)!
n=1 n=1 

λ(1−β)x = λβe−λx e 

= λβe−λβx . 

It follows that T has the exponential distribution with parameter λβ. D 

Exercise 4. Let (N i)i≥1 be a family of independent Poisson processes with respect positive intensities 
(λi)i≥1. Then 

(1). Show that any two distinct Poisson processes in this family have no points in common. 

Proof. First, for a fixed t > 0, P[N i(t − ε, t] = 0] → 1 as ε → 0 by the definition of a Poisson process, so a.s. 
N i does not jump at time t. 

Let T i denote the n-th jump time of N i . For i = j, N i and N j are independent. Hence conditional on n 
N j (and thus on T j ), N i has the same law and a.s. does not jump on one T j by the above argument. Since n n 
there are countably many T j , a.s. N i does not jump on any T j . We conclude that two distinct Poisson n n

process in this family have no simultaneous jumps (i.e. no points in common). D e e 
(2). If λi = λ < ∞, then N i = Nt defines the counting process of a Poisson process with intensity i≥1 i≥1 t 

λ. 

Proof. Let Xi be independent Poisson random variables with mean λi. Using the discrete convolution 
formula, we have 

k j k−jN λ λ−λ1 1 −λ2 2P[X1 + X2 = k] = e e 
j! (k − j)!

j=0 

kN1 k!−(λ1 +λ2) j k−j= e λ λ1 2k! j!(k − j)!
j=0 

−(λ1 +λ2) (λ1 + λ2)
k 

= e . 
k! en

Hence X1 + X2 is a Poisson random variable with mean λ1 + λ2. Inductively, we see that is a e i=1 Xi 
n

Poisson random variable with mean i=1 λi. e 
Define X = i≥1 Xi pointwise. By the monotone convergence theorem, N N 

E[X] = E[Xi] = λi = λ, 
i≥1 i≥1 
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so in particular, X is a.s. finite. Hence 1∑n Xi=k → 1X=k a.s. and by the dominated convergence theorem,
i=1

n n
λ k

P[X = k] = lim [
∑ n

(
P i)

k λ
Xi = k] = lim exp(−

∑
λ −λ
i)

∑
i=1 = e .

n→∞ n→∞ k! k!
i=1 i=1

Therefore X is a Poisson random variable with mean λ.
Next, since for each i and 0 < t1 < · · · < tm, N i

t1 , N
i(t1, t2], . . . , N i(tm−1, tm] are independent, it is easily

seen that Nt1 , N(t1, t2], . . . , N(tm 1, tm] are independent. Moreover, for (a, b]− ⊂ R+, N i(a, b] is a Poisson
random variable with mean λi(b−a), so our argument above implies that N(a, b] is a Poisson random variable
with mean λ(b− a). This by definition shows that N is a Poisson process with intensity λ. �

Exercise 5. (Optional, 3 bonus points)

(1). Let (Nt)t 0 be a Poisson process with intensity λ > 0 and let (Xi)i 0 be a sequence of i.i.d. random≥ ≥
variables, independent of N . Show that if g(s, x) is a function and Tj are jump times of N then

E

exp


Ntθ∑ t

g(T θ
j , X

g(s,X)
j)  = exp

j

(
λ

=1

 ∫ dsE
0

[
e − 1

])
.

This is called Campbell’s Theorem.

Proof. First we establish a uniform property of jump times of a Poisson process. Namely, claim that condi-
tioned on Nt = n, the jump times Tj have the same joint distribution as U(1), . . . , U(n), the order statistics
of n i.i.d. uniform random variables on [0, t], whose density is given by

n!
f(t1, . . . , tn) = , 0 < t1 <

tn
· · · < tn < t.

We use f(X = t) to denote the density function of X at t. Let T0 = 0 and for 1 ≤ j ≤ n + 1, the
inter-arrival times Ej = Tj − Tj 1 are independent exponential variables with parameter λ. Hence we have−

f(T = t , . . . , T = t| 1 1 n n, Nt = n)
f(T1 = t1, . . . , Tn = tn Nt = n) =

f(Nt = n)

f(E1 = t1, E2 = t2 − t1, . . . , En = tn
=

− tn−1, En+1 > t− tn)

e−λt(λt)n/n!

λne−λt1eλ(t1−t2) · · · eλ(tn−1−tn)eλ(tn−t)
=

e−λt(λt)n/n!

n!
=
tn

as claimed.
If U(j) are the order statistics of Uj , let σ be the permutation such that σ((j)) = j. Since Xj are i.i.d.,

(Xσ(j)) has the same joint distribution as (Xj). Hence

n n n
d

g(U(j), Xj) = g(Uj , Xσ(j)) = g(Uj , Xj).
j=1 j=1 j=1

∑ ∑ ∑
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This fact and the claim above imply that

E
[

exp
( Nt

θ
∑ ∞ n

g(Tj , Xj)
)]

=
∑

P[Nt = n] · E
[

exp
(
θ
∑

g(Tj , Xj)
j=1 n=0 j=1

)
|Nt = n

]
∑∞ e−

nλt(λt)n
= E

[
exp

(
θ
∑

g(U(j), Xj)
n!

n=0 j=1

)]
∞

=
∑ e−λt(λt)n

E
[ n

exp θg(Uj , Xj)
n!

n=0 j=1∑ − n

]
∞

e λt n

∏
(λt)

( )
=

∏
EUj

EXj
exp

(
θg(Uj , Xj)

n!
n=0 j=1

)
= e−λt

n

∑∞ (λt)n

n!
=0

(1

t

∫ t

E
0

t

[ n

eθg(s,X)
]
ds
)

= e−λt exp
(
λ

∫
E
[
eθg(s,X)

]
ds( 0

)
= exp λ

∫ t

E
[
eθg(s,X) − 1

0

]
ds
)
.

�

(2). Cars arrive at the beginning of a long road in a Poisson stream of intensity λ from time t = 0 onwards.
A car has a fixed velocity V miles per hour, where V > 0 is a random variable. The velocities of cars are
i.i.d. and are independent of the arrival process. Cars can overtake each other freely. Show that the number
of cars on the first x miles of the road at time t has a Poisson distribution with mean λE[min{t, x/V }].

Proof. Let Nt be the number of cars that enter the road before time t. Suppose the j-th car enters the road
at time Tj and has velocity Vj . Note that the j-th car is on the first x miles of the road at time t if and only
if t− Tj ≤ x/Vj . Hence the number of cars on the first x miles of the road at time t is given by∑Nt

1 .{t−Tj≤x/Vj}
j=1

Using Part (1), we compute its moment-generating function:

ϕ(θ) = E
[

exp
( Nt

θ
∑

1{t−Tj≤x/Vj}
j=1

)]
= exp

(
λ

∫ t

E
0

[
exp(θ1{t−s≤x/V )} − 1

]
ds
)

= exp
(
λE
[ ∫ t

exp(θ1 ){t−s≤x/V
0

} − 1 ds .

If t ≤ x/V , then exp(θ1 t s x/V )− 1 = eθ

])
{ − ≤ } − 1, so

ϕ(θ) = exp λt(eθ − 1) .

If t > x/V , for s < t x/V , exp(θ 0
1 t s x/V ) 1 = e 1 = 0; and for s t x/V , exp(θ1 t s x/V )

θ

− { − ≤ } −

(
−

)
≥ − { − ≤ } −1 =

e − 1. Hence
x

ϕ(θ) = exp λE (eθ 1) = exp λE[x/V ](eθ 1) .
V

− −

It follows that

( [ ]) ( )
ϕ(θ) = exp λE[min{t, x/V }](eθ − 1)

which is exactly the moment-generating function
completes

(
of a Poisson distribution

)
with mean λE[min{t, x/V }]. This

the proof. �
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Exercise 6. (Optional, 3 bonus points) Customers enter a supermarket as a Poisson process with intensity 
2. There are two salesmen near the door who offer passing customers samples of a new product. Each 
customer takes an exponential time of parameter 1 to think about the new product, and during this time 
occupies the full attention of one salesman. Having tried the product, customers proceed into the store and 
leave by another door. When both salesmen are occupied, customers walk straight in. Assuming that both 
salesmen are free at time 0, find the probability that both are busy at a later time t. 

Proof. We can construct a continuous-time Markov chain as follows. The chain has three states {0, 1, 2}, 
namely, zero salesmen are occupied, one salesman is occupied and two salesmen are occupied. Since the 
inter-arrival times of the Poisson process are exponential variables with intensity 2, we see that the Q-matrix 
associated to the chain is ⎤⎡⎤⎡ 

q00 q01 q02 −2 2 0 ⎣q10 q11 q12⎦ = ⎣ 1 −3 2 ⎦Q = . 
q20 q21 q22 0 2 −2 

It is easy to get that the eigenvalues of Q are −5, −2 and 0, so the eigendecomposition of Q is 

−5 0 0 
0 −2 0⎦ UT 

⎤⎡ ⎣Q = U . 
0 0 0 

Hence the transition matrix is ⎤⎡ − 5te 0 0 
P (t) = etQ = U ⎣ − 2t ⎦ UT0 e 0 . 

0 0 1 

The probability that both salesmen are busy at time t is p02(t), which must have the form 
− 5t p02(t) = ae + be− 2t + c 

for some constants a, b and c. 
" ""Since P (0) = I, P " (0) = Q and P "" (0) = Q2, we see that p02(0) = 0, p02(0) = 0, and p02(0) = 4. Hence 

4 
⎧ ⎪⎨ ⎪⎩ 

⎧ ⎪⎨ 
−5a − 2b = 0 =⇒ b = − 2 .

3 

a + b + c = 0 a = 15 ⎪⎩ 225a + 4b = 4 c = 5 

4 − 5t − 2 − 2t 2 e 3 e + . DWe conclude that the probability that both salesmen are busy at time t is 15 5 
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