18.445 Introduction to Stochastic Processes Lecture 11: Summary on random walks on network

Hao Wu

MIT

18 March 2015

Hao Wu (MIT) 18.445 18 March 2015 1 / 9

Effective Resistance

Consider a network $(G = (V, E), \{c(e) : e \in E\})$.

Suppose that W is a voltage with source $a \in V$ and sink $z \in V$.

Let *I* be the corresponding current flow :

$$I(\overrightarrow{xy}) = (W(x) - W(y))/r(x, y).$$

Define the effective resistance between a and z by

$$R(a \leftrightarrow z) = \frac{W(a) - W(z)}{||I||}.$$

Effective resistance and Escape probability

$$\mathbb{P}_{a}[\tau_{z} < \tau_{a}^{+}] = \frac{1}{c(a)R(a \leftrightarrow z)}.$$

Effective resistance and Green's function

$$G_{\tau_z}(a,a)=c(a)R(a\leftrightarrow z).$$

Three operations

Define the effective resistance between a and z by

$$R(a \leftrightarrow z) = \frac{W(a) - W(z)}{||I||}.$$

Three operations without changing the effective resistance

Parallel Law: Conductances in parallel add.

Series Law: Resistances in series add.

Gluing: Identify vertices with the same voltage.

Estimates on effective resistance

Effective resistance and energy of flows

$$R(a \leftrightarrow z) = \inf \{ \mathcal{E}(\theta) : \theta \text{ unit flow from } a \text{ to } z \}.$$

Corollaries

• If $r(e) \le r'(e)$ for all e, we have

$$R(a \leftrightarrow z; r) \leq R(a \leftrightarrow z; r').$$

• **Upper bound**: For any unit flow θ from a to z, we have

$$R(a \leftrightarrow z) \leq \mathcal{E}(\theta)$$
.

• Lower bound : Nash-William Inequality. $\{\Pi_k\}$ are disjoint edge-cut sets which separate a from z, then

$$R(a \leftrightarrow z) \ge \sum_{k} \left(\sum_{e \in \Pi_{k}} c(e) \right)^{-1}.$$

Random walk on network

Consider a random walk on network $(G = (V, E), \{c(e) : e \in E\})$.

- Transition matrix : P(x, y) = c(x, y)/c(x)
- It is reversible
- The stationary measure : $\pi(x) = c(x)/c_G$.
- The commute time is defined by

$$\tau_{ba}=\min\{n\geq\tau_b:X_n=a\}.$$

Commute Time Identity

$$\mathbb{E}_{a}[\tau_{ba}] = c_{G}R(a \leftrightarrow b).$$

Assume that the network is transitive, then

$$\mathbb{E}_{a}[\tau_{b}] = \mathbb{E}_{b}[\tau_{a}].$$

In particular,

$$2\mathbb{E}_a[\tau_b]=c_GR(a\leftrightarrow b).$$

Random walk on binary tree

A tree is a connected graph with no cycles.

A **rooted tree** has a distinguished vertex v_0 , called the root.

The **depth** of a vertex *v* is its graph distance to the root.

A **leaf** is a vertex with degree one.

A **rooted binary tree** of depth k, denoted by T_2^k , is a tree with a root v_0 such that

- v_0 has degree 2.
- For $1 \le j \le k 1$, every vertex at distance j from the root has degree 3.
- The vertices at distance k from the root are leaves (they have degree 1).

Random walk on binary tree

- T_k^2 is a network
- all edges have unit resistance
- there are $N = 2^{k+1} 1$ vertices
- there are N-1 edges

Theorem

Consider the random walk $(X_n)_n$ on this network. Let B be the set of leaves. Define the commute time

$$\tau_{Bv_0}=\min\{n\geq \tau_B:X_n=v_0.\}$$

Hao Wu (MIT) 18.445 18 March 2015

Random walk on torus

A 2-dimensional torus:

$$\mathbb{Z}_N^2 = \mathbb{Z}_N \times \mathbb{Z}_N.$$

Two vertices $\overrightarrow{x} = (x^1, x^2)$ and $\overrightarrow{y} = (y^1, y^2)$ are neighbors if,

$$\begin{cases} \text{either} x^1 = y^1, x^2 \equiv y^2 \pm 1 \mod N \\ \text{or} \quad x^2 = y^2, x^1 \equiv y^1 \pm 1 \mod N \end{cases}$$

mage by MIT OpenCourseware.

This is a network and assume that all edges have unit resistance.

Theorem

Let $k = |x - y| \ge 2$ on \mathbb{Z}_N^2 . There exist constants $0 < c < C < \infty$ such that

$$cN^2 \log k \leq \mathbb{E}_x[\tau_y] \leq CN^2 \log k$$
.

Random walk on torus

 ${\bf Image\ by\ MIT\ OpenCourseWare.}$

MIT OpenCourseWare http://ocw.mit.edu

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.