18.445 Introduction to Stochastic Processes Lecture 17: Martingle: a.s convergence and L^p -convergence Hao Wu MIT 15 April 2015 1/10 Hao Wu (MIT) 18.445 15 April 2015 #### Recall - Martingale : $\mathbb{E}[X_n | \mathcal{F}_m] = X_m$ for $n \ge m$. - Optional Stopping Theorem : $\mathbb{E}[X_T] = \mathbb{E}[X_0]$? ### Today's goal - a.s.martingale convergence - Doob's maximal inequality - convergence in L^p for p > 1 Hao Wu (MIT) 18.445 15 April 2015 2 / 10 ## Various convergences ### **Spaces** - L^1 space : $\mathbb{E}[|X|] < \infty$. - L^1 -norm : $||X||_1 = \mathbb{E}[|X|]$. - triangle inequality : $||X + Y||_1 \le ||X||_1 + ||Y||_1$. - L^p space for p > 1 : $\mathbb{E}[|X|^p] < \infty$ - L^p -norm : $||X||_p = \mathbb{E}[|X|^p]^{1/p}$. - triangle inequality : $||X + Y||_p \le ||X||_p + ||Y||_p$. #### Lemma For p > 1, L^p is contained in L^1 . ### different notions of convergence - almost sure convergence : $X_n \to X_\infty$ a.s. - convergence in $L^p: X_n \to X_\infty$ in L^p . - convergence in $L^1: X_n \to X_\infty$ in L^1 . Hao Wu (MIT) 18.445 15 April 2015 3 / 10 # A.S. Martingale Convergence #### **Theorem** Let $X = (X_n)_{n \ge 0}$ be a supermartingale which is bounded in L^1 , i.e. $\sup_n \mathbb{E}[|X_n|] < \infty$. Then $$X_n \to X_\infty$$, almost surely, as $n \to \infty$, for some $X_{\infty} \in L^1$. Proof Attached on the website. ### Corollary Let $X = (X_n)_{n \ge 0}$ be a non-negative supermartingale. Then X_n converges a.s. to some a.s. finite limit. Hao Wu (MIT) 18.445 15 April 2015 4/10 ## **Examples** **Example 1** Let $(\xi_j)_{j\geq 1}$ be independent random variables with mean zero such that $\sum_{i=1}^{\infty} \mathbb{E}[|\xi_j|] < \infty$. Set $$X_0=0, \quad X_n=\sum_{j=1}^n \xi_j.$$ - $(X_n)_{n\geq 0}$ is a martingale bounded in L^1 . - X_n converges a.s. to $X_\infty = \sum_{i=1}^\infty \xi_i$. - In fact, X_n also converges to X_{∞} in L^1 . **Example 2** Let $(\xi_j)_{j\geq 1}$ be non-negative independent random variables with mean one. Set $$X_0 = 1, \quad X_n = \prod_{j=1}^n \xi_j.$$ - $(X_n)_{n>0}$ is a non-negative martingale. - X_n converges a.s. to some limit $X_\infty \in L^1$. ### Question Suppose that a martingale X is bounded in L^1 , then we have the a.s. convergence. **Question :** Do we have $\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$? **Answer :** It is true when we have convergence in L^1 . - Convergence in L^p for p > 1 implies convergence in L^1 . (Today) - Convergence in L¹. (Next lecture) 6/10 Hao Wu (MIT) 18.445 15 April 2015 ## Doob's maximal inequality #### **Theorem** Let $X = (X_n)_{n \geq 0}$ be a non-negative submartingale. Define $X_n^* = \max_{0 \leq k \leq n} X_k$. Then $$\lambda \mathbb{P}[X_n^* \geq \lambda] \leq \mathbb{E}[X_n \mathbf{1}_[X_n^* \geq \lambda]] \leq \mathbb{E}[X_n].$$ #### **Theorem** Let $X = (X_n)_{n \ge 0}$ be a non-negative submartingale. Define $X_n^* = \max_{0 \le k \le n} X_k$. Then, for all p > 1, we have $$||X_n^*||_p \leq \frac{p}{p-1}||X_n||_p.$$ **Recall** Hölder inequality : p > 1, q > 1 and 1/p + 1/q = 1, then $$\mathbb{E}[|XY|] \leq \mathbb{E}[|X|^p]^{1/p} \times \mathbb{E}[|Y|^q]^{1/q}.$$ # L^p Convergence for p > 1 #### **Theorem** Let $X = (X_n)_{n \ge 0}$ be a martingale and p > 1, then the following statements are equivalent. - **1** X is bounded in L^p : $\sup_{n\geq 0} ||X_n||_p < \infty$ - ② X converges a.s and in L^p to a random variable X_{∞} . - **1** There exists a random variable $Z \in L^p$ such that $$X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$$ a.s. ### Corollary Let $Z \in L^p$. Then $$\mathbb{E}[Z \mid \mathcal{F}_n] \to \mathbb{E}[Z \mid \mathcal{F}_\infty], \quad a.s. and in L^p.$$ 4 D > 4 B > 4 B > 4 B > # Example Let $(\xi_j)_{j\geq 1}$ be independent random variables with mean zero such that $\sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2] < \infty$. Set $$X_0=0, \quad X_n=\sum_{j=1}^n \xi_j.$$ - $(X_n)_{n\geq 0}$ is a martingale bounded in L^2 . - X_n converges to $X_\infty = \sum_{j=1}^\infty \xi_j$ a.s. and in L^2 . - ullet $\mathbb{E}[X_{\infty}^2] = \sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2].$ Hao Wu (MIT) 18.445 9/10 # Example Let $(\xi_j)_{j\geq 1}$ be non-negative independent random variables with mean one. Set $$X_0 = 1, \quad X_n = \prod_{j=1}^n \xi_j.$$ - \bigcirc $(X_n)_{n\geq 0}$ is a non-negative martingale. - ② X_n converges a.s. to some limit $X_\infty \in L^1$. #### Question: **1** Do we have $\mathbb{E}[X_{\infty}] = 1$? **Answer :** Set $a_j = \mathbb{E}[\sqrt{\xi_j}] \in (0, 1]$. - If $\Pi_j a_j > 0$, then X converges in L^1 and $\mathbb{E}[X_{\infty}] = 1$. (Next lecture) - ② If $\Pi_j a_j = 0$, then $X_{\infty} = 0$ a.s. Hao Wu (MIT) MIT OpenCourseWare http://ocw.mit.edu # 18.445 Introduction to Stochastic Processes Spring 2015 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.