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Recall : A voltage W is a harmonic function on V \ {a, z}. A current
flow I associated to the voltage W is defined by

−→I(xy) = (W (x)−W (y))/r(x , y).

The effective resistance is defined by

R(a↔ z) = (W (a)−W (z))/||I||.

Relation with escape probability

P +
a[τz < τa ] = 1/ (c(a)R(a↔ z)) .

Today’s Goal :
three operations to simplify a network
effective resistance and energy of a flow
Nash-William inequality
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Three operations to simplify a network

We introduce three operations that simplify the network without
changing quantities of interest : all voltages and currents remain
unchanged under the following operations.

Parallel Law : Conductances in parallel add.

Series Law : Resistances in series add.

Gluing : Identify vertices with the same voltage.

Example : Biased nearest-neighbor random walk.
Fix α > 1 and consider the path with vertices {0,1,2, ...,N} and
weights c(k − 1, k k) = α for k = 1, ...,N. Consider the random walk on
this network, then we have

1 k− α−
Pk [τN < τ0] =

1− α−N .
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Energy of a flow

Definition
The energy of a flow θ is defined by∑

E(θ) = θ(e 2) r(e),
e

where the summation is taking over unoriented edges.

Theorem (Effective resistance and Energy of flows)

For any finite connected graph,

R(a↔ z) = inf{E(θ) : θ unit flow from a to z}.

Moreover, the unique minimizer is the unit current flow.
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Application

Theorem
If {r(e) : e ∈ E} and {r ′(e) : e ∈ E} are sets of resistances on the
edges of the same graph G and if r(e) ≤ r ′(e) for all e ∈ E, then

R(a↔ z; r) ≤ R(a↔ z; r ′).

Corollary
Adding an edge decreases the effective resistance, hence
increases the escape probability.
Gluing vertices decreases the effective resistance, hence
increases the escape probability.
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Nash-William inequality

Definition
We call Π ⊂ E an edge-cutset separating a from z if every path from a
to z include some edge in Π. In other words, if we cut all edges in Π,
then a can not be connected to z.

Theorem (Nash-William inequality)

If {Πk} are disjoint edge-cutsets which separate a from z, then −1∑ ∑
R(a↔ z) ≥  c(e) .

k e∈Πk
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Example

BN : N × N two-dimensional grid graph.
The four corners are (1,1), (1,N), (N,1), (N,N).

Theorem
Let a = (1,1), z = (N,N). Suppose that each edge has unit
resistance. Then the effective resistance satisfies

1
log(N − 1) ≤ R(a↔ z) ≤ 2 log N.

2

Proof
Lower bound : Nash-William inequality
Upper bound : Construct a nice unit flow.
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Effective resistance

Effective resistances form a metric space.

Theorem
For any vertices x , y , z, we have

R(x ↔ z) ≤ R(x ↔ y) + R(y ↔ z).
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