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Preface 

These lecture notes, part of a course given in Aarhus, August 1999, treat the classical 
empirical process defined in terms of empirical distribution functions. A proof, expanding on 

os-Major-Tusn´one in a 1989 paper by Bretagnolle and Massart, is given for the Koml´ ady result 
on the speed of convergence of the empirical process to a Brownian bridge in the supremum 
norm. 

Herein “A := B” means  A is defined by B, whereas  “A =: B” means  B is defined by A. 

Richard Dudley

Cambridge, Mass., August 24, 1999
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Chapter 1 

Empirical distribution functions: 
the KMT theorem 

1.1 Introduction 

Let U [0, 1] be the uniform distribution on [0, 1] and U its distribution function. Let X1,X2 , . . .  
be independent and identically distributed random variables with law U . Let  Fn(t) be the  
empirical distribution function based on X1,X2, . . . ,Xn, 

n1 
Fn(t) :=  1{Xj≤t}, n 

j=1 

√
and αn(t) the corresponding empirical process, i.e., αn(t) =  n(Fn(t) − t), t  ∈ [0, 1]. Here 
αn may be called the classical empirical process. Recall that a Brownian bridge is a Gaussian 
stochastic process B(t), 0 ≤ t ≤ 1, with EB(t) = 0  and  EB(t)B(u) =  t(1 − u) for  0  ≤ t ≤ u ≤ 
1. Donsker (1952) proved (neglecting measurability problems) that αn(t) converges in law to 

os, Major, and Tusn´a Brownian bridge B(t) with respect to the sup norm. Koml´ ady (1975) 
stated a sharp rate of convergence, namely that on some probability space there exist Xi i.i.d. 
U [0, 1] and Brownian bridges Bn such that 

√ 
P sup | n(αn(t) − Bn(t))| > x + c log n < Ke  −λx (1.1) 

0≤t≤1 

os, Major and Tusn´for all n and x, where  c,K, and λ are positive absolute constants. Koml´ ady 
(KMT) formulated a construction giving a joint distribution of αn and Bn, and this construc-

os, Major and Tusn´tion has been accepted by later workers. But Koml´ ady gave hardly any 
proof for (1.1). Csörgő and  Révész (1981) sketched a method of proof of (1.1) based on lemmas 
of G. Tusnády, Lemmas 1.2 and 1.4 below. The implication from Lemma 1.4 to 1.2 is not dif-

org˝ficult, but Cs¨ o and  Révész did not include a proof of Lemma 1.4. Bretagnolle and Massart 
(1989) gave a proof of the lemmas and of the inequality (1.1) with specific constants, Theorem 
1.1 below. Bretagnolle and Massart’s proof was rather compressed and some readers have 
had difficulty following it. Cs¨ o and  Horv´org˝ ath (1993), pp. 116-139, expanded the proof while 
making it more elementary and gave a proof of Lemma 1.4 for n ≥ n0 where n0 is at least 100. 
The purpose of the present chapter is to give a detailed and in some minor details corrected 
version of the original Bretagnolle and Massart proof of the lemmas for all n, overlapping in 
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part with the Csörg˝ ath proof, then to prove (1.1) for some constants, as given by o and  Horv´
Bretagnolle and Massart and largely following their proof. 

Mason and van Zwet (1987) gave another proof of the inequality (1.1) and an extended 
form of it for subintervals 0 ≤ t ≤ d/n with 1 ≤ d ≤ n and log n replaced by log d, without 
Tusnády’s inequalities and without specifying the constants c, K, λ. Some parts of the proof 
sketched by Mason and van Zwet are given in more detail by Mason (1998). 

Acknowledgments. I am very grateful to Evarist Giné, David Mason, Jon Wellner, and Uwe 
Einmahl for conversations and correspondence on the topic. 

1.2 Statements: the theorem and Tusnády’s lemmas 

The main result of the present chapter is: 

Theorem 1.1. (Bretagnolle and Massart) The approximation (1.1) of the empirical process 
by the Brownian bridge holds with c = 12, K = 2  and λ = 1/6 for n ≥ 2. 

The rest of this chapter will give a proof of the theorem. In a preprint, Rio (1991, Theorem 
5.1) states in place of (1.1) 

√ 
P sup | n(αn(t) − Bn(t))| > ax  + b log n + γ log 2 < Ke  −x (1.2) 

0≤t≤1 

for n ≥ 8 where  a = 3.26, b  = 4.86, γ = 2.70, and K =  1.  This implies that  for  n ≥ 8, (1.1) 
holds with c = 5.76, K  = 1,  and  λ = 1/3.26, where all three constants are better than in 
Theorem 1.1. 

Tusnády’s lemmas are concerned with approximating symmetric binomial distributions by 
normal distributions. Let B(n, 1/2) denote the symmetric binomial distribution for n trials. 
Thus if Bn has this distribution, Bn is the number of successes in n independent trials with 
probability 1/2 of success on each trial. For any distribution function F and 0 < t <  1 let  
F −1(t) := inf{x : F (x) ≥ t}. Here  is  one  of  Tusnády’s lemmas (Lemma 4 of Bretagnolle and 
Massart (1989)). 

Lemma 1.2. Let Φ be the standard normal distribution function and Y a standard normal 
random variable. Let Φn be the distribution function of B(n, 1/2) and set Cn := Φ−1(Φ(Y )) −n 
n/2. Then  √ |Cn| ≤ 1 +  (  n/2)|Y |, (1.3) 

√ |Cn − ( n/2)Y | ≤ 1 +  Y 2/8. (1.4) 

Recall the following well known and easily checked facts: 

Theorem 1.3. Let X be a real random variable with distribution function F . 
(a) If F is continuous then F (X) has a U [0, 1] distribution. 
(b) For any F , if  V has a U [0, 1] distribution then F −1(V ) has distribution function F . 

Thus Φ(Y ) has  a  U [0, 1] distribution and Φ−1(Φ(Y )) has distribution B(n, 1/2). Lemma 1.2 n 
will be shown (by a relatively short proof ) to follow from: 
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Lemma 1.4. Let Y be a standard normal variable and let βn be a binomial random variable 
with distribution B(n, 1/2). Then for any integer j such that 0 ≤ j ≤ n and n + j is even, we 
have √√ 

P (βn ≥ (n + j)/2) ≥ P ( nY /2 ≥ n(1 − 1 − j/n)), (1.5) 
√ 

P (βn ≥ (n + j)/2) ≤ P ( nY/2 ≥ (j − 2)/2). (1.6) 

Remarks. The restriction that n + j be even is not stated in the formulation of the lemma 
by Bretagnolle and Massart (1989), but n + j is always even in their proof. If (1.6) holds for 
n + j even it also holds directly for n + j odd, but the same is not clear for (1.5). It turns out 
that only the case n + j even is needed in the proof of Lemma 1.2, so I chose to restrict the 
statement to that case. 

The following form of Stirling’s formula with remainder is used in the proof of Lemma 1.4. 
√ 

Lemma 1.5. Let n! =  (n/e)n 2πnAn where An = 1  +  βn/(12n), which defines An and βn 

for n = 1, 2, · · ·. Then  βn↓1 as n → ∞. 

1.3 Stirling’s formula: Proof of Lemma 1.5 

It can be checked directly that β1 > β2 > · · ·  > β8 > 1. So it suffices to prove the lemma 
for n ≥ 8. We have An = exp((12n)−1 − θn/(360n3 )) where 0 < θn < 1, see Whittaker and 
Watson (1927), p. 252 or Nanjundiah (1959). Then by Taylor’s theorem with remainder, 

1 1 1 
An = 1 +  

12n 
+ 

288n2 + 
6(12n)3 φne 1/12n exp(−θn/(360n 3 )) 

where 0 < φn < 1. Next, 

1 
βn+1 ≤ 12(n + 1)  exp − 1

12(n + 1)  

1 1 1/(12(n+1)) ≤ 1 +  +
24(n + 1)  6(12(n + 1))2 e , 

from which lim supn→∞ βn ≤ 1, and 

1 1 
βn = 12n[An − 1] ≥ 12n 1 +  + 

2 exp(−1/(360n 3 )) − 1 .
12n 288n

Using e−x ≥ 1 − x gives 

1 1 1 1 1 
βn ≥ 12n + − 1 +  + 

212n 288n2 360n3 12n 288n

1 1 1 1
= 1  +  − 1 +  + .

224n 30n2 12n 288n
Thus lim infn→∞ βn ≥ 1 and  βn → 1 as  n → ∞. To  prove  βn ≥ βn+1 for n ≥ 8 it will suffice 
to show that 

1 e1/108 1 1 1 1
1 +  + ≤ 1 +  − 1 +  +

24(n + 1)  6 · 144n2 24n 30n2 96 288 · 82 
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or 
e1/108 1 1 1 1 

+ 1 + + ≤
6 · 144n2 30n2 96 288 · 64 24n(n + 1)  

or that 0.035/n2 ≤ 1/[24n(n + 1)]  or  0.84 ≤ 1 − 1/(n + 1),  which  holds  for  n ≥ 8, proving that 
βn decreases with n. Since its limit is 1, Lemma 1.5 is proved. � 

1.4 Proof of Lemma 1.4 

First, (1.5) will be proved. For any i = 0, 1, · · · , n  such that n + i is even, let k := (n + i)/2 
so that k is an integer, n/2 ≤ k ≤ n, and  i = 2k −n. Let  pni := P (βn = (n + i)/2) = P (βn = 

k )/2
n and xi := i/n. Define pni := 0 for n + i odd. The factorials in (nk) =  (n k ) will be 

approximated via Stirling’s formula with correction terms as in Lemma 1.5. To that end, let 

1 +  u/(12n)
CS(u, v, w, x, n) :=  

(1 + v/[6n(1 − x)])(1 + w/[6n(1 + x)]) 
. 

By Lemma 1.5, we can write for 0 ≤ i <  n  and n + i even 

2 pni = CS(xi, n) 2/πn exp(−ng(xi)/2 − (1/2) log(1 − xi )) (1.7) 

where g(x) :=  (1  +  x) log(1  +  x)+  (1  −x) log(1  −x) and  CS(xi, n) :=  CS(βn, βn−k , βk , xi, n). 
By Lemma 1.5 and since k ≥ n/2, 

1+ := 1.013251 ≥ 12(e(2π)−1/2 − 1) = β1 ≥ βn−k ≥ βk ≥ βn > 1. 

Thus, for x := xi, by clear or easily checked monotonicity properties, 

CS(x, n) ≤ CS(βn, βk , βk , x, n) =  

( 
βn 

) 
βk β2 

]−1 

+ k1 +  1 +
12n 3n(1 − x2) 36n2(1 − x2) 

≤ CS(βn, βk , βk , 0, n) ≤ CS(βn, βn, βn, 0, n) ( )[  ]−11 1 1 ≤ CS(1, 1, 1, 0, n) = 1 +  1 +  + .
212n 3n 36n

It will be shown next that log(1 + y) − 2 log(1  +  2y) ≤ −3y + 7y2/2 for  y ≥ 0. Both sides 
vanish for y = 0. Differentiating and clearing fractions, we get a clearly true inequality. Setting 
y := 1/(12n) then  gives  

log CS(xi, n) ≤ −1/(4n) +  7/(288n 2 ). (1.8) 

To get a lower bound for CS(x, n) we have by an analogous string of inequalities 

( ) 
1+ (1+)2 

}−1
1 

CS(x, n) ≥ 1 +  1 +
3n(1 − x2) 

+ 
36n2(1 − x2) 

. (1.9)
12n 
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The inequality (1.5) to be proved can be written as 

n √ ∑ √ 
pni ≥ 1 − Φ(2 n(1 − 1 − j/n)). (1.10) 

i=j 

When j = 0 the result is clear. When n ≤ 4 and  j = n or n − 2 the result can be checked from 
tables of the normal distribution. Thus we can assume from here on 

n ≥ 5. (1.11) 

CASE I. Let j2 ≥ 2n, in  other  words  xj ≥ 2/n. Recall that for t >  0 we have  P (Y >  t) ≤√ 
(t 2π)−1 exp(−t2/2), e.g. Dudley (1993), Lemma 12.1.6(a). Then (1.10) follows easily when 
j = n and n ≥ 5. To prove it for j = n − 2 it is enough to show 

√ √ √ √ 
n(2 − log 2) − 4 2n + log(n + 1) + 4  +  log[2  2π( n − 2)] ≥ 0, n  ≥ 5. 

The left  side is  increasing  in  n for n ≥ 5 and  is  ≥ 0 at  n = 5.  
For 5 ≤ n ≤ 7  we have (n − 4)2 < 2n, so we can assume in the present case that 2n ≤ j2 ≤√ √ 

(n − 4)2 and n ≥ 8. Let yi := 2 n(1 − 1 − i/n). Then it will suffice to show 

yi+2 

pni ≥ φ(u)du, i = j, j + 2, · · · , n  − 4, (1.12) 
yi 

where φ is the standard normal density function. Let √ √ 
fn(x) :=  n/2π(1 − x) exp(−2n(1 − 1 − x)2). (1.13) 

√ √ 
By the change of variables u = 2 n(1 − 1 − x), (1.12) becomes 

xi+2 

pni ≥ fn(x)dx. (1.14) 
xi 

Clearly fn > 0. To see that fn(x) is decreasing in x for 2/n ≤ x ≤ 1 − 4/n, note that  

√ 
2(1 − x)f ′ 

n/fn = 1  − 4n[ 1 − x − 1 +  x], 
√ √ 

so fn is decreasing where 1 − x − (1 − x) > 1/(4n). We have √y − y ≥ y for y ≤ 1/4, so √ 
y − y >  1/(4n) for  1/(4n) < y  ≤ 1/4. Let y := 1 − x. Also  √1 − x − (1 − x) > x/4 for  √ 

x <  8/9, so 1 − x − (1 − x) > 1/(4n) for  1/n < x < 8/9. Thus 1 − x − (1 − x) > 1/(4n) 
for 1/n < x < 1 − 1/(4n), which includes the desired range. Thus to prove (1.14) it will be 
enough to show that 

pni ≥ (2/n)fn(xi), i  = j, j + 2, · · · , n  − 4. (1.15) 

So by (1.7) it will be enough to show that for 2/n ≤ x ≤ 1 − 4/n and n ≥ 8, 
√ 

CS(x, n)(1 + x)−1/2 exp[n{4(1 − 1 − x)2 − g(x)}/2] ≥ 1. (1.16) 

Let √ 
J(x) := 4(1  − 1 − x)2 − g(x). (1.17) 
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Then J is increasing for 0 < x <  1, since its first and second derivatives are both 0 at 0, while 
its third derivative is easily checked to be positive on (0, 1). In light of (1.9), to prove (1.16) it 
suffices to show that 

1 √ 1+ (1+)2 

1 +  e nJ (x)/2 ≥ 1 +  x 1 +  
3n(1 − x2) 

+ 
36n2(1 − x2) 

. (1.18)
12n 

√ √ 
When x ≤ 1 − 4/n and n ≥ 8 the right side is less than 1.5, using first 1 +  x ≤ 2, next 
x ≤ 1 − 4/n, and lastly n ≥ 8. For x ≥ 0.55 and n ≥ 8 the left side is larger than 1.57, so 
(1.18) is proved for x ≥ 0.55. We will next need the inequality 

4J (x) ≥ x 3/2 + 7x /48, 0 ≤ x ≤ 0.55. (1.19) 

To check this one can calculate J (0) = J ′(0) = J ′′(0) = 0, J (3)(0) = 3, J  (4) (0) = 7/2, so that 
the right side of (1.19) is the Taylor series of J around 0 through fourth order. One then shows 
straightforwardly that J (5) (x) > 0 for  0  ≤ x <  1. 

It follows since nx2 ≥ 2 and  n ≥ 8 that  nJ (x)/2 ≥ x/2 +  7/24n. Let  K(x) :=  √ 
exp(x/2)/ 1 +  x and κ(x) := (K(x) − 1)/x2 . We will next see that κ(·) is decreasing 
on [0, 1]. To show κ′ ≤ 0 is  equivalent  to  ex/2[4 + 4x − x2] ≥ 4(1 + x)3/2, which is true at √ 
x = 0. Differentiating, we would like to show ex/2[6 − x2/2] ≥ 6 1 +  x, or squaring that and 
multiplying by 4, ex(144 − 24x2 + x4) ≥ 144(1 + x). This is true at x = 0. Differentiating, we 
would like to prove ex(144 − 48x − 24x2 + 4x3 + x4) ≥ 144. Using ex ≥ 1+  x and algebra gives 
this result for 0 ≤ x ≤ 1. 

It follows that K(x) ≥ 1 + 0.3799/n when 2/n ≤ x ≤ 0.55. It remains to show that for 
x ≤ 0.55, 

1 +
1 

1 +
0.3799 7/(24n) ≥ 1 +  

1+ (1+)2 

e + .
12n n 3n(1 − x2) 36n2(1 − x2) 

At x = 0.55 the right side is less than 1 + 0.543/n, so Case I is completed since 0.543 ≤ 
1/12 + 0.3799 + 7/24. 

√ 
CASE II. The remaining case is j <  2n. For any integer k, P (βn ≥ k) = 1−P (βn ≤ k−1). For 
k = (n + j)/2 we  have  k −1 = (n + j −2)/2. If n is odd, then P (βn ≥ n/2) = 1/2 =  P (Y ≥ 0). 
If n is even, then P (βn ≥ n/2) − pn0/2 = 1/2 =  P (Y ≥ 0). So, since pn0 = 0  for  n odd, (1.5) 
is equivalent to 

∑ √1 
2 
pn0 + pni ≤ P (0 ≤ Y ≤ 2 n(1 − 1 − j/n)). (1.20) 

0<i≤j−2 

√ 
Given j <  2n, a family I0, I1, · · · , IK of adjacent intervals will be defined such that for n odd, 

√ 
pni ≤ P ( nY /2 ∈ Ik ) with  i = 2k + 1, 0 ≤ k ≤ K := (j − 3)/2, (1.21) 

while for n even, 
√ 

pni ≤ P ( nY /2 ∈ Ik ) with  i = 2k, 1 ≤ k ≤ K := (j − 2)/2, (1.22) 

and √ 
pn0/2 ≤ P ( nY /2 ∈ I0). (1.23) 
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In either case, 
I0 ∪ I1 ∪ · · · ∪ IK ⊂ [0, n(1 − 1 − j/n)]. (1.24) 

The intervals will be defined by 

δk+1 := (k + 1)/n + k(k + 1/2)(k + 1)/n3/2 , k  ≥ 0, (1.25) 

∆k+1 := δk+1 + k + 1/2 =  δk+1 + (i + 1)/2, i  = 2k, n even, (1.26) 

∆k+1 := δk+1 + k + 1  =  δk+1 + (i + 1)/2, i  = 2k + 1, n  odd, (1.27) 

Ik := [∆k , ∆k+1] with ∆0 = 0. (1.28) 

It will be shown that I0, I1, · · · , IK defined by (1.25) through (1.28) satisfy (1.21) through 
(1.24). Recall that n ≥ 5 (1.11) and xi := i/n. 

√ 
Proof of (1.24). It needs to be shown that ∆K+1 ≤ n(1 − 

√
1 − xj ). Since j <  2n, we have  

K ≤ j/2 − 1 < n/2 − 1 and  
√ √ 

2δK+1 ≤ (K + 1)/n + K(K + 1/2)/(n 2) ≤ xj /2 +  nxj /(4 2). 

We have ∆K+1 = nxj /2 − 1/2 +  δK+1. It will be shown next that 
√ 

21 − 1 − x ≥ x/2 +  x /8, 0 ≤ x ≤ 1. (1.29) 

The functions and their first derivatives agree at 0 while the second derivative of the left side 
is clearly larger. 

It then remains to prove that 
√ 

21/2 +  nxj (1/8 − 1/4 2) − xj /2 ≥ 0. 

2This is true since nxj ≤ 2 and  xj ≤ (2/8)1/2 = 1/2, so (1.24) is proved. 

Proof of (1.21)-(1.23). First it will  be  proved  that  

√ [ ] 
2 1 7 (n − 1)i2 (i/n)2n 

pni ≤ √ exp − + 
2 − +

2n(1 − i2/n2) 
. (1.30)

2πn 4n 288n 2n

In light of (1.7) and (1.8), it is enough to prove, for x := i/n, that  

2−[ng(x) +  log(1  − x 2) − (n − 1)x ]/2 ≤ x 2n/2n(1 − x 2). (1.31) 

It is easy to verify that for 0 ≤ t <  1, 

∞ 
2r g(t) =  (1  +  t) log(1  +  t) + (1  − t) log(1  − t) =  t /r(2r − 1). 

r=1 

Thus the left side of (1.31) can be expanded as r≥2 x
2r (1 − n/(2r − 1))/2r = A + B where ∑ n−1A = r=2 and B = . We  have  r≥n

2r−2 − x 2n−2r )d2A/dx2 = (2r − n − 1)(x 
2≤r≤(n+1)/2 
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√ 

which is ≤ 0 for  0  ≤ x ≤ 1. Since A = dA/dx = 0  for  x = 0  we  have  A ≤ 0 for  0  ≤ x ≤ 1. 
Then, 2nB ≤ x2n/(1 − x2), so (1.30) is proved. √√ 

We have for n ≥ 5 and  x ≤ ( 2n − 2)/n that x2n/(1 − x2) < 10−3, since  n 
→ ( 2n − 2)/n 
is decreasing in n for n ≥ 8 and the statement can be checked for n = 5, 6, 7, 8. So (1.30) yields 

2pni ≤ 2/πn exp[−0.249/n + 7/288n 2 − (n − 1)i2 /2n ]. (1.32) 

Next we will need: 

Lemma 1.6. For any 0 ≤ a <  b  and a standard normal variable Y , 

2P (Y ∈ [a, b]) ≥ 1/2π(b − a) exp[−a /4 − b2/4]φ(a, b) (1.33) 

where φ(a, b) := [4/(b2 − a2)] sinh[(b2 − a2)/4] ≥ 1. 

Proof. Since the Taylor series of sinh around 0 has all coefficients positive, and (sinh u)/u is an 
even function, clearly sinh u/u ≥ 1 for any real u. The conclusion of the lemma is equivalent 
to 

a + b 
∫ b 

2 2exp(−u /2)du ≥ exp(−a /2) − exp(−b2/2). (1.34)
2 a 

Letting x := b − a and v := u − a we need to prove 

2a + 
x x 

exp(−av − v 2/2)dv ≥ 1 − exp(−ax − x /2).
2 0 

This holds for x = 0. Taking derivatives of both sides and simplifying, we would like to show 

x 
2 2exp(−av − v /2)dv ≥ x exp(−ax − x /2). 

0 

This also holds for x = 0, and differentiating both sides leads to a clearly true inequality, so 
Lemma 1.6 is proved. � 

For the intervals Ik , Lemma 1.6 yields 

√ 
P ( nY /2 ∈ Ik) ≥ 2/πnφk exp[−(∆2 + ∆2 

k)/n + log(∆k+1 − ∆k )] (1.35)k+1 

√ √
where φk := φ(2∆k / n, 2∆k+1/ n). The aim is to show that the ratio of the bounds (1.35) 
over (1.32) is at least 1. 

First consider the case k = 0.  If  n is even, this means we want to prove (1.23). Using 
(1.32) and (1.35) and φ0 ≥ 1, it suffices to show that 

0.249/n − 7/288n 2 − 1/4n − 1/n2 − 1/n3 + log(1  + 2/n) ≥ 0. 

Since log(1 + u) ≥ u − u2/2 for  u ≥ 0 by taking a derivative, it will be enough to show that 

(E)n := 1.999/n − 3/n2 − 7/288n 2 − 1/n3 ≥ 0, 

and it is easily checked that n(E)n > 0 since  n ≥ 5. 
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If n is odd, then (1.32) applies for i = 2k+1 = 1 and we have ∆0 = 0,  ∆1 = δ1 +1 = 1 + 1/n 
so (1.35) yields 

√ 
P ( nY /2 ∈ I0) ≥ 2/πn exp[−(1 + 1/n)2/n + log(1  + 1/n)]. 

Using log(1 + u) ≥ u − u2/2 again, the desired inequality can be checked since n ≥ 5. This 
completes the case k = 0.  √ 

Now suppose k ≥ 1. In this case, i <  2n − 2 implies n ≥ 10 for n even and n ≥ 13 for n 
odd. Let sk := δk + δk+1 and dk := δk+1 − δk . Then  for  i as in the definition of ∆k+1, 

∆k+1 + ∆k = i + sk, (1.36) 

∆k+1 − ∆k = 1  +  dk , (1.37) 

2k + 1  2k3 + k 
sk = + 

n3/2 
, (1.38) 

n 
and 

1 3k2 

dk = 
n 

+ 
n3/2 

. (1.39) 

From the Taylor series of sinh around 0 one easily sees that (sinh u)/u ≥ 1 +  u2/6 for all u. 
Letting u := (∆2 − ∆2 

k)/n ≥ i/n gives k+1 

log φk ≥ log(1 + i2/6n 2). (1.40) 

We have √ 
dk ≤ 3/(2 n) (1.41) 

√ 
since 2k ≤ 2n − 2 and  n ≥ 10. Next we have another lemma: 

Lemma 1.7. log(1 + x) ≥ λx for 0 ≤ x ≤ α for each of the pairs (α, λ) =  (0.207, 0.9), 
(0.195, 0.913), (0.14, 0.93), (0.04, 0.98). 

Proof. Since x 
→ log(1 + x) is concave, or equivalently we are proving 1 + x ≥ eλx where the 
latter function is convex, it suffices to check the inequalities at the endpoints, where they hold. 

Lemma 1.7 and (1.40) then give 

2log φk ≥ 0.98i2 /6n (1.42) 

since i2/(6n2 ) ≤ 1/3n ≤ 0.04, n  ≥ 10. Next, 

Lemma 1.8. We have log(∆k+1 − ∆k) ≥ λdk where λ = 0.9 when n is even and n ≥ 20, 
λ = 0.93 when n is odd and n ≥ 25, and  λ = 0.913 when k = 1  and n ≥ 10. Only these cases 
are possible (for k ≥ 1). 

√ 
Proof. If n is even and k ≥ 2, then 4 ≤ i = 2k <  2n − 2 implies n ≥ 20. If n is odd and √ 
k ≥ 2, then 5 ≤ i = 2k + 1  < 2n − 2 implies n ≥ 25. So only the given cases are possible. 

We have k ≤ kn := n/2 − 1 for  n even or kn := n/2 − 3/2 for  n odd. Let √ 
d(n) := 1/n + 3k2 

n/n3/2 and t := 1/ n. It will be shown that d(n) is decreasing in n, 
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√ 
separately for n even and odd. For n even we would like to show that 3t/2 +  (1  − 3 2)t2 + 3t3 √ 
is increasing for 0 ≤ t ≤ 1/ 20 and in fact its derivative is > 0.04. For n odd we would like to √ 
show that 3t/2 + (1  − 9/ 2)t2 + 27t3/4 is increasing. We find that its derivative has no real 
roots and so is always positive as desired. 

Since d(·) is decreasing for n ≥ 20, its maximum for n even, n ≥ 20 is at n = 20  and  we  
find it is less than 0.207 so Lemma 1.7 applies to give λ = 0.9. Similarly for n odd and n ≥ 25 
we have the maximum d(25) < 0.14 and Lemma 1.7 applies to give λ = 0.93. 

If k = 1  then  n 
→ n−1 + 3/n3/2 is clearly decreasing. Its value at n = 10  is  less  than  0.195 
and Lemma 1.7 applies with λ = 0.913. So Lemma 1.8 is proved. � 

It will next be shown that for n ≥ 10


√

sk ≤ n −1 + k/ n. (1.43) 

√ √ 
By (1.38) this is equivalent to 2/ n + (2k2 + 1)/n ≤ 1. Since k ≤ n/2 − 1 one can check 
that (1.43) holds for n ≥ 14. For n = 10, 11, 12, 13 note that k is an integer, in fact k ≤ 1, and 
(1.43) holds. 

After some calculations, letting s := sk and d := dk and noting that 

1
∆2 + ∆2 = 

2
[(∆k+1 − ∆k )2 + (∆k + ∆k+1)2],k k+1 

to show that the ratio of (1.35) to (1.32) is at least 1 is equivalent to showing that 

is d s2 d2 1 7 i2 0.249 − − − − − − − + + log(1  +  d) + log  φk ≥ 0. (1.44)
2 2n2n n 2n 2n 2n 288n n 

Proof of (1.44). First suppose that n is even and n ≥ 20 or n is odd and n ≥ 25. Apply the 
bound (1.41) for d2/2n, (1.42) for log φk , (1.43) for s and Lemma 1.8 for log(1 + d). Apply the 
exact value (1.39) of d in the d/n and λd terms. We assemble together terms with factors k2 , 
k and no factor of k, getting a lower bound A for (1.44) of the form 

A := α[k2/n3/2] − 2β[k/n 5/4 ] +  γ[1/n] (1.45) 

where, if n is even, so i = 2k and λ = 0.9, we get 
√ 

α = 0.7 − [2.5 − 2(0.98)/3]/ n − 3/n, 

β = n −3/4 + n −5/4/2, 
2γ = 0.649 − [17/8 +  7/288]/n − 1/2n . 

Note that for each fixed n, A is 1/n times a quadratic in k/n1/4. Also,  α and γ are increasing 
in n while β is decreasing. Thus for n ≥ 20 the supremum of β2 − αγ is attained at n = 20  
where it is < −0.06. So the quadratic has no real roots and since α >  0 it is always positive, 
thus (1.44) holds. 

When n is odd, i = 2k + 1,  λ = 0.93 and n ≥ 25. We get a lower bound A for (1.44) of the 
same form (1.45) where now 

√ 
α = 0.79 − [2.5 − 2(0.98)/3]/ n − 3/n, 
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5/4β = 1/2n 1/4 + 2(1  − 0.98/6)/n3/4 + 1/2n , 
2γ = 0.679 − (3.625 + 7/288 − 0.98/6)/n − 1/2n . 

For the same reasons, the supremum of β2 − αγ for n ≥ 25 is now attained at n = 25  and  is  
negative (less than -0.015), so the conclusion (1.44) again holds. 

It remains to consider the case k = 1  where  n is even and n ≥ 10 or n is odd and n ≥ 13. 
Here instead of bounds for sk and dk we use the exact values (1.38) and (1.39) for k = 1.  We  
still use the bounds (1.42) for log φk and Lemma 1.8 for log(1+dk). When n is even, i = 2k = 2,  
and we obtain a lower bound A′ for (1.44) of the form a1/n + a2/n

3/2 + · · · . All terms n−2 and 
−(3/2)−α ≥ −n−3/2beyond have negative coefficients. Applying the inequality −n · 10−α for 

n ≥ 10 and α = 1/2, 1, · · · , I found a lower bound A′ ≥ 0.662/n − 1.115/n3/2 > 0 for  n ≥ 10. 
The same method for n odd gave A′ ≥ 0.662/n −1.998/n3/2 > 0 for  n ≥ 13. The proof of (1.5) 
is complete. 

Proof of (1.6). For n odd, (1.6) is clear when j = 1, so we can assume j ≥ 3. For n even, 
(1.6) is clear when j = 2. We next consider the case j = 0. By symmetry we need to prove √
that pn0 ≤ P ( n|Y |/2 ≤ 1). This can be checked from a normal table for n = 2.  For  n ≥ 4 √ √
we have pn0 ≤ 2/πn by (1.32). The integral of the standard normal density from −2/ n√
to 2/ n is clearly larger than the length of the interval times the density at the endpoints, 
namely 2 2/πn exp(−2/n). Since exp(−2/n) ≥ 1/2 for  n ≥ 4 the proof for n even and j = 0  
is done. 

We are left with the cases j ≥ 3. For j = n, we  have  pnn = 2−n and can check the 
conclusion for n = 3, 4 from a normal table. Let φ be the standard normal density. We have 
the inequality, for t >  0, 

P (Y ≥ t) ≥ ψ(t) :=  φ(t)[t−1 − t−3], (1.46) 

Feller (1968), p. 175. Feller does not give a proof. For completeness, here is one: ∫ ∞ ∫ ∞ 
ψ(t) =  − ψ′(x)dx = φ(x)(1 − 3x −4)dx ≤ P (Y ≥ t). 

t t 

To prove (1.6) via (1.46) for j = n ≥ 5 we need to prove 

≤ φ(tn)t−11/2n (1 − t−2)n n 

√
where tn := (n − 2)/ n. Clearly n 
→ tn is increasing. For n ≥ 5 we  have  1  − t−2 ≥ 4/9 and  n 
(2π)−1/2 e2−2/n · 4/9 ≥ 0.878. Thus it suffices to prove 

n(log 2 − 0.5) + 0.5 log  n − log(n − 2) + log(0.878) ≥ 0, n  ≥ 5. 

This can be checked for n = 5, 6  and  the left  side is  increasing  in  n for n ≥ 6, so (1.6) for 
j = n ≥ 5 follows. √

So it will suffice to prove pni ≤ P ( nY /2 ∈ [(i − 2)/2, i/2]) for j ≤ i < n. From (1.30) and 
Lemma 1.6, and the bound φk ≥ 1, it will suffice to prove, for x := i/n, 

1 7 (n − 1)x2 x2n n[(x − 2/n)2 + x2]− + − + ≤ −
4n 288n2 2 2n(1 − x2) 4 

where 3/n ≤ x ≤ 1 − 2/n. Note  that  2n(1 − x2) ≥ 4. Thus it is enough to prove that 

2n 2 x − x 2/2 − x /4 ≥ 3/4n + 7/288n 
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for 3/n ≤ x ≤ 1 and  n ≥ 5, which holds since the function on the left is concave, and the 
inequality holds at the endpoints. Thus (1.6) and Lemma 1.4 are proved. � 

1.5 Proof of Lemma 1.2 

Let G(x) be the distribution function of a normal random variable Z with mean n/2 and  vari-
ance n/4 (the same mean and variance as for B(n, 1/2)). Let B(k, n, 1/2) := 0≤i≤k (i

n)2−n . 
Lemma 1.4 directly implies 

√ 
G( 2kn − n/2) ≤ B(k, n, 1/2) ≤ G(k + 1)  for  k ≤ n/2. (1.47) 

Specifically, letting k := (n − j)/2, (1.6) implies 

B(k, n, 1/2) ≤ P (Z ≥ n − k − 1) = P (k + 1  ≥ n − Z) =  G(k + 1)  

since n − Z has the same distribution as Z. (1.5) implies ( √ ) √ √n n n 
B(k, n, 1/2) ≥ P − Y ≤ −  + 2kn = G( 2kn − n/2).

2 2 2 

Let 
η := Φ−1(G(Z)). (1.48)n 

This definition of η from Z is called a quantile transformation. By Theorem 1.3, G(Z) has  a  
U [0, 1] distribution and η a B(n, 1/2) distribution. It will be shown that 

Z − 1 ≤ η ≤ Z + (Z − n/2)2 /2n + 1  if  Z ≤ n/2, (1.49) 

and 
Z − (Z − n/2)2/2n − 1 ≤ η ≤ Z + 1  if  Z ≥ n/2. (1.50) 

Define a sequence of extended real numbers −∞ = c−1 < c0 < c1 < · · · < cn = +∞ by G(ck ) =  
B(k, n, 1/2) Then one can check that η = k on the event Ak := {ω : ck−1 < Z(ω) ≤ ck }. By  
(1.47), G(ck ) =  B(k, n, 1/2) ≤ G(k + 1)  for  k ≤ n/2. So, on the set Ak for k ≤ n/2 we have  
Z − 1 ≤ ck − 1 ≤ k = η. Note that for n even, n/2 < cn/2 while for n odd, n/2 =  c(n−1)/2 . So  
the left side of (1.49) is proved. 

If Y is a standard normal random variable with distribution function Φ and density φ then 
Φ(x) ≤ φ(x)/x for x >  0, e.g. Dudley (1993), Lemma 12.1.6(a). So we have ( √ ) 

n n n 
P (Z ≤ −n/2) = P + Y ≤ −  = 

2 2 2 

( √ ) 
n √ e−2n 1 

P 
2 

Y ≤ −n = Φ(−2 n) ≤ √ < 
2n . 2 2πn 

So G(−n/2) < G(c0) =  2−n and −n/2 < c0. Thus  if  Z ≤ −n/2 then  η = 0.  Next  note  that  
Z + (Z − n/2)2/2n = (Z + n/2)2/2n ≥ 0 always. Thus the right side of (1.49) holds when 
Z ≤ −n/2 and whenever η = 0. Now assume that Z ≥ −n/2. By (1.47), for 1 ≤ k ≤ n/2 

G((2(k − 1)n)1/2 − n/2) ≤ B(k − 1, n,  1/2) = G(ck−1), 
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from which it follows that (2(k − 1)n)1/2 − n/2 ≤ ck−1 and 

k − 1 ≤ (ck−1 + n/2)2/2n. (1.51) 

The function x 
→ (x + n/2)2 is clearly increasing for x ≥ −n/2 and thus for x ≥ c0. Applying 
(1.51) we get on the set Ak for 1 ≤ k ≤ n/2 

η = k ≤ (Z + n/2)2/2n + 1 =  Z + (Z − n/2)2 /2n + 1. 

Since P (Z ≤ n/2) = 1/2 ≤ P (η ≤ n/2), and η is a non-decreasing function of Z, Z ≤ n/2 
implies η ≤ n/2. So (1.49) is proved. 

It will be shown next that (η, Z) has the same joint distribution as (n − η, n − Z). It is 
clear that η and n − η have the same distribution and that Z and n −Z do.  We have for  each  
k = 0, 1, · · · , n,  n  −η = k if and only if η = n −k if and only if cn−k−1 < Z  ≤ cn−k. We need to 
show that this is equivalent to ck−1 ≤ n−Z <  ck , in other  words  n−ck < Z  ≤ n−ck−1. Thus  we  
want to show that cn−k−1 = n−ck for each k. It is easy to check that G(n−ck ) =  P (Z ≥ ck ) =  
1 −G(ck ) while G(ck ) =  B(k, n, 1/2) and G(cn−k−1) =  B(n − k − 1, n,  1/2) = 1 −B(k, n, 1/2). 
The statement about joint distributions follows. (1.49) thus implies (1.50). 

Some elementary algebra, (1.49) and (1.50) imply 

|η − Z| ≤  1 +  (Z − n/2)2/2n (1.52) 

and since Z <  n/2 implies η ≤ n/2 and  Z >  n/2 implies η ≥ n/2, 

|η − n/2| ≤  1 +  |Z − n/2|. (1.53) 
√

Letting Z = (n + nY )/2 and noting that then G(Z) ≡ Φ(Y ), (1.48), (1.52), and (1.53) 
imply Lemma 1.2 with Cn = η − n/2. � 

1.6 Inequalities for the separate processes 

We will need facts providing a modulus of continuity for the Brownian bridge and something 
similar for the empirical process (although it is discontinuous). Let h(t) :=  +∞ if t ≤ −1 
and 

h(t) :=  (1  +  t) log(1  +  t) − t, t > −1. (1.54) 

Lemma 1.9. Let ξ be a binomial random variable with parameters n and p. Then for any 
x ≥ 0 and m := np we have 

P (ξ − m ≥ x) ≤ inf e −sxEes(ξ−m) = 
m 

)m+x n − m 
)n−m−x 

. (1.55) 
s>0 m + x n − m − x 

If p ≤ 1/2 then bounds for the right side of (1.55) give 

m x 
P (ξ ≥ m + x) ≤ exp − h (1.56)

1 − p m 

and 
2P (ξ ≤ m − x) ≤ exp(−x /[2p(1 − p)]). (1.57) 
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( ) ∣ 

Proof. The first inequality in (1.55) is clear. Let E(k, n, p) denote the probability of at least 
k successes in n independent trials with probability p of success on each trial, and B(k, n, p) 
the probability of at most k successes. According to Chernoff ’s inequalities (Chernoff, 1954), 
we have with q := 1 − p 

E(k, n, p) ≤ (np/k)k (nq/(n − k))n−k if k ≥ np, 

and symmetrically 

B(k, n, p) ≤ (np/k)k (nq/(n − k))n−k if k ≤ np. 

These inequalities hold for k not necessarily an integer; for this and the equality in (1.55) see 
also Hoeffding (1963). Then for p ≤ 1/2, (1.56) is a consequence proved by Bennett (1962), see 
also Shorack and Wellner (1986, p. 440, (3)), and (1.57) is a consequence proved by Okamoto 
(1958) and extended by Hoeffding (1963). � 

Let Fn be an empirical distribution function for the uniform distribution on [0, 1] and √ 
αn(t) :=  n(Fn(t) − t), 0 ≤ t ≤ 1, the corresponding empirical process. The previous lemma 
extends via martingales to a bound for the empirical process on intervals. 

Lemma 1.10. For any b with 0 < b  ≤ 1/2 and x >  0, 

√ nb x(1 − b)|αn(t)| > x/  n) ≤ 2 exp  − h
1 − b nb 

( sup  P 
0

≤t≤b 

≤ 2 exp(−nb(1 − b)h(x/(nb))). (1.58) 

( sup  P 
0

( sup  P 
0

Remark. The bound given by (1.58) is Lemma 2 of Bretagnolle and Massart (1989). Lemma 
1.2 of Cs¨ o and  Horv´org˝ ath (1993), p. 116, has instead the bound 2 exp(−nbh(x/(nb))). This 
does not follow from Lemma 1.10, while the converse implication holds by (1.83) below, but I 
could not follow Cs¨ o and  Horv´org˝ ath’s proof of their form. 

Proof. From the binomial conditional distributions of multinomial variables we have for 0 ≤ 
s ≤ t <  1 

E(Fn(t)|Fn(u), u  ≤ s) =  E(Fn(t)|Fn(s)) 

t − s t − s 1 − t 
= Fn(s) +  (1 − Fn(s)) = + Fn(s),

1 − s 1 − s 1 − s 

from which it follows directly that 

Fn(t) − t ∣ Fn(s) − s 
E 

1 − t 
∣Fn(u), u  ≤ s =

1 − s
, 

in other words, the process (Fn(t) − t)/(1 − t), 0 ≤ t <  1 is a martingale in t (here n is 
fixed). Thus, αn(t)/(1 − t), 0 ≤ t <  1, is also a martingale, and for any real s the process 
exp(sαn(t)/(1 − t)) is a submartingale, e.g. Dudley (1993), 10.3.3(b). Then 

√ √ 

≤t≤b ≤t≤b 
αn(t) > x/  n) ≤ αn(t)/(1 − t) > x/  n) 
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( ( )) 

which for any s > 0 equals 


√ 
P sup exp(sαn(t)/(1 − t)) > exp(sx/ n) . 

0≤t≤b 

By Doob’s inequality (e.g. Dudley (1993), 10.4.2, for a finite sequence increasing up to a dense 
set) the latter probability is 

√ nb x(1 − b)≤ inf exp(−sx/ n)E exp(sαn(b)/(1 − b)) ≤ exp − h 
s>0 1 − b nb 

by Lemma 1.9, (1.56). In the same way, by (1.57) we get 
√ 

P ( sup  (−αn(t)) > x/  n) ≤ exp(−x 2(1 − b)/(2nb))). (1.59) 
0≤t≤b 

It is easy to check that h(u) ≤ u2/2 for  u ≥ 0, so the first inequality in Lemma 1.10 follows. 
It is easily shown by derivatives that h(qy) ≥ q2h(y) for  y ≥ 0 and  0  ≤ q ≤ 1. For q = 1  − b, 
the bound in (1.58) then follows. � 

We next have a corresponding inequality for the Brownian bridge. 

Lemma 1.11. Let B(t), 0 ≤ t ≤ 1, be a Brownian bridge, 0 < b < 1 and x > 0. Let  Φ be the 
standard normal distribution function. Then √ 

P ( sup  B(t) > x) =  1  − Φ(x/ b(1 − b)) 
0≤t≤b ( ( )) 

+ exp(−2x 2) 1 − Φ 
(1 − 2b)x √ 

b(1 − b) 
. (1.60) 

If 0 < b ≤ 1/2, then for all x > 0, 

P ( sup  B(t) > x) ≤ exp(−x 2/(2b(1 − b))). (1.61) 
0≤t≤b 

Proof. Let X(t), 0 ≤ t <  ∞ be  a  Wiener process.  For some  real  α and value of X(1) let 
β := X(1) − α.  It will  be  shown that for  any real  α and y 

P{ sup X(t) − αt > y|X(1)} = 1{β>y} + exp(−2y(y − β))1{β≤y} . (1.62) 
0≤t≤1 

Clearly, if β >  y  then sup0≤t≤1 X(t) − αt > y (let t = 1). Suppose β ≤ y. One can apply 
a reflection argument as in the proof of Dudley (1993), Proposition 12.3.3, where details are 
given on making such an argument rigorous. Let X(t) =  B(t) +  tX(1) for 0 ≤ t ≤ 1, where 
B(·) is a Brownian bridge. We want to find P (sup0≤t≤1 B(t) +  βt > y).  But  this is the  same  
as P (sup0≤t≤1 Y (t) > y|Y (1) = β) for a Wiener process Y . For  β ≤ y, the probability that 
sup0≤t≤1 Y (t) > y  and β ≤ Y (1) ≤ β + dy is the same by reflection as P (2y − β ≤ Y (1) ≤ 
2y − β + dy). Thus the desired conditional probability, for the standard normal density φ, is  
φ(2y − β)/φ(β) =  exp(−2y(y − β)) as stated. So (1.62) is proved. 
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√ 

We can write the Brownian bridge B as W (t) − tW (1), 0 ≤ t ≤ 1, for a Wiener process W . 
Let W1(t) :=  b−1/2W (bt), 0 ≤ t <  ∞. Then  W1 is a Wiener process. Let η := W (1) −W (b). 
Then η has a normal N (0, 1√− b) distribution and is independent of W1(t), 0 ≤ t ≤ 1. Let √ 
γ := ((1 − b)W1(1) − bη) b/x. We  have  

√ √ 
P ( sup  B(t) > x|η, W1(1)) = P sup (W1(t) − (bW1(1) + bη)t) > x/  b|η, W1(1) . 

0≤t≤b 0≤t≤1 

√ 
Now the process W1(t) − (bW1(t) +  bη)t, 0 ≤ t ≤ 1, has the same distribution as a Wiener √ 
process Y (t), 0 ≤ t ≤ 1, given that Y (1) = (1 − b)W1(1) − bη. Thus by (1.62) with α = 0,  

P ( sup  B(t) > x|η, W1(1)) = 1{γ>1} + 1{γ≤1} exp(−2x 2(1 − γ)/b). (1.63) 
0≤t≤b 

Thus, integrating gives 

2 2P ( sup  B(t) > x) =  P (γ >  1) + exp(−2x /b)E exp(2x γ/b)1{γ≤1} . 
0≤t≤b 

From the definition of γ it has a N (0, b(1 − b)/x2) distribution. Since x is constant, the latter 
integral with respect to γ can be evaluated by completing the square in the exponent and 
yields (1.60). 

We next need the inequality, for x ≥ 0, 

1 21 − Φ(x) ≤ 
2 

exp(−x /2). (1.64) 

This is easy to check via the first derivative for 0 ≤ x ≤ 2/π. On the other hand we have the 
inequality 1 −Φ(x) ≤ φ(x)/x, x > 0, e.g. Dudley (1993), 12.1.6(a), which gives the conclusion 
for x ≥ 2/π. 

Applying (1.64) to both terms of (1.60) gives (1.61), so the Lemma is proved. � 

1.7 Proof of Theorem 1.1 

For the Brownian bridge B(t), 0 ≤ t ≤ 1, it is well known that for any x >  0 

P ( sup  |B(t)| ≥ x) ≤ 2 exp(−2x 2), 
0≤t≤1 

e.g. Dudley (1993), Proposition 12.3.3. It follows that 

√ 
P ( n sup |B(t)| ≥ u) ≤ 2 exp(−u/3) 

0≤t≤1 

for u ≥ n/6. We also have |α1(t)| ≤ 1 for all t and 

P ( sup  |αn(t)| ≥ x) ≤ D exp(−2x 2), (1.65) 
0≤t≤1 
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which is the Dvoretzky-Kiefer-Wolfowitz inequality with a constant D. Massart (1990) proved √ 
(1.65) with the sharp constant D = 2. Earlier Hu (1985) proved it with D = 4  2. D = 6  
suffices for present purposes. Given D, it follows that for u ≥ n/6, 

√ 
P ( n sup |αn(t)| ≥  u) ≤ D exp(−u/3). 

0≤t≤1 

For x <  6 log 2, we have 2e−x/6 > 1 so the conclusion of Theorem 1.1 holds. holds. For 
x >  n/3 − 12 log n, u := (x + 12  log  n)/2 > n/6 so the left side of (1.1) is bounded above by 
(2 + D)n−2e−x/6. We  have  (2  +  D)n−2 ≤ 2 for  n ≥ 2 and  D ≤ 6. 

Thus it will be enough to prove Theorem 1.1 when 

6 log  2  ≤ x ≤ n/3 − 12 log n. (1.66) 

The function t 
→ t/3 − 12 log t is decreasing for t <  36, increasing for t >  36. Thus one can 
check that for (1.66) to be non-vacuous is equivalent to 

n ≥ 204. (1.67) 

Let N be the largest integer such that 2N ≤ n, so  that  ν := 2N ≤ n <  2ν. Let  Z be 
a ν-dimensional normal random variable with independent components, each having mean 0 
and variance λ := n/ν. For integers 0 ≤ i <  m  let A(i, m) :=  {i + 1, · · · ,m}. For any 
two vectors a := (a1, · · · , aν ) and  b := (b1, · · · , bν ) in  Rν , we have the usual inner product ∑ν(a, b) :=  For any subset D ⊂ A(0, ν) let  1D be its indicator function as a member i=1 aibi. 
of Rν . For any integers j = 0, 1, 2, · · ·  and k = 0, 1, · · ·, let  

Ij,k := A(2j k, 2j (k + 1)), (1.68) 

let ej,k be the indicator function of Ij,k and for j ≥ 1, let e := ej−1,2k − ej,k/2. Then one j,k 

can easily check that the family E := {e′ : 1  ≤ j ≤ N, 0 ≤ k <  2N −j } ∪ {eN,0} is an j,k 

orthogonal basis of Rν with (eN,0, eN,0) =  ν and (ej,k , ej,k) =  2j−2 for each of the given j, k. 
Let Wj,k := (Z, ej,k ) and  W ′ := (Z, e′ j,k ). Then since the elements of E are orthogonal it j,k 

follows that the random variables W ′ for 1 ≤ j ≤ N, 0 ≤ k <  2N −j and WN,0 are independent j,k 
normal with 

j,k = EWN,0 = 0, Var(W ′EW ′ j,k) =  λ2j−2 , Var(WN,0) =  λν. (1.69) 

Recalling the notation of Lemma 1.2, let Φn be the distribution function of a binomial B(n, 1/2) 
random variable, with inverse Φ−1. Now  let  Gm(t) :=  Φ−1(Φ(t)).n m 

We will begin defining the construction that will connect the empirical process with a 
Brownian bridge. Let 

UN,0 := n (1.70) 

and then recursively as j decreases from j = N to j = 1,  

Uj−1,2k := GUj,k 
((22−j /λ)1/2 W ′ j,k), Uj−1,2k+1 := Uj,k − Uj−1,2k, (1.71) 

k = 0, 1, · · · , 2N −j −1. Note that by (1.69), (22−j /λ)1/2W ′ j,k has a standard normal distribution, 
so Φ of it has a U [0, 1] distribution. It is easy to verify successively for j = N, N − 1, · · · , 0 
that the random vector {Uj,k, 0 ≤ k <  2N −j } has a multinomial distribution with parameters 
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∑ 

∑ 

∑ ∑ 

( ) 

n, 2j−N , · · · , 2j−N . Let  X := (U0,0, U0,1, · · · , U0,ν−1). Then the random vector X has a 
multinomial distribution with parameters n, 1/ν, · · · , 1/ν. 

The random vector X is equal in distribution to 

{n(Fn((k + 1)/ν) − Fn(k/ν)), 0 ≤ k ≤ ν − 1}, (1.72) 

while for a Wiener process W , Z is equal in distribution to 

√ { n(W ((k + 1)/ν) − W (k/ν)), 0 ≤ k ≤ ν − 1}. (1.73) 

Without loss of generality, we can assume that the above equalities in distribution are actual 
equalities for some uniform empirical distribution functions Fn and Wiener process W = Wn. 
Specifically, consider a vector of i.i.d. uniform random variables (x1, · · · , xn) ∈ Rn such that 

n1 
Fn(t) :=  1{xj≤t}n 

j=1 

and note that W has sample paths in C[0, 1]. Both R
n and C[0, 1] are separable Banach 

spaces. Thus one can let (x1, · · · , xn) and  W be conditionally independent given the vectors in 
(1.72) and (1.73) which have the joint distribution of X and Z, by the Vorob’ev-Berkes-Philipp 
theorem, see Berkes and Philippp (1979), Lemma A1. Then we define a Brownian bridge by √ 
Bn(t) :=  Wn(t) − tWn(1) and the empirical process αn(t) :=  n(Fn(t) − t), 0 ≤ t ≤ 1. By 
our choices, we then have ⎧ ⎫ν ⎨j−1 ( )⎬ 

{n(Fn(j/ν) − j/ν)}ν = Xi − 
n 

(1.74)j=0 ⎩ ν ⎭ 
i=0 j=0 

and ⎧⎛ ⎞ ⎫ν {√ ⎨ j−1 ν−1 ⎬ 
nBn(j/ν) 

}ν
j=0 = ⎝ Zi

⎠ − 
ν

j 
Zr ⎭ 

. (1.75) ⎩ 
i=0 r=0 j=0 

Theorem 1.1 will be proved for the given Bn and αn. Specifically, we want to prove 

√ 
P0 := P sup |αn(t) − Bn(t)| > (x + 12  log  n)/ n ≤ 2 exp(−x/6). (1.76) 

0≤t≤1 

It will be shown that αn(j/ν) and  Bn(j/ν) are not too far apart for j = 0, 1, · · · , ν  while 
the increments of the processes over the intervals between the lattice points j/ν are also not 
too large. 

Let C := 0.29. Let M be the least integer such that 

≤ λ2M +1C(x + 6  log  n) . (1.77) 

Since n ≥ 204 (1.67) and λ <  2 this implies M ≥ 2. We have by definition of M and (1.66) 

0.1 · 2N +12M ≤ λ2M ≤ C(x + 6  log  n) ≤ Cn/3 < < 2N −2 

so M ≤ N − 3. 
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For each t ∈ [0, 1], let πM (t) be the nearest point of the grid {i/2N −M , 0 ≤ i ≤ 2N −M }, or  
mif there are two nearest points, take the smaller one. Let D := X −Z and D(m) :=  i=1 Di. 

Let C ′ := 0.855 and define 

Θ :=  {Uj,k ≤ λ(1 + C ′)2j whenever M + 1  < j  ≤ N, 0 ≤ k <  2N −j } 

∩ {Uj,k ≥ λ(1 − C ′)2j whenever M <  j  ≤ N, 0 ≤ k <  2N −j }. 
Then 

P0 ≤ P1 + P2 + P3 + P (Θc) 

where ( ) √ 
P1 := P sup |αn(t) − αn(πM (t))| > 0.28(x + 6  log  n)/ n , (1.78) 

0≤t≤1 

√ 
P2 := P sup |Bn(t) − Bn(πM (t))| > 0.22(x + 6  log  n)/ n , (1.79) 

0≤t≤1 

and, recalling (1.74) and (1.75), 

P3 := 2N −M max P |D(m) − 
m

D(ν)| > 0.5x + 9  log  n ∩ Θ , (1.80) 
m∈A(M ) ν 

where A(M) :=  {k2M : k = 1, 2, · · ·} ∩ A(0, ν). 
First we bound P (Θc). Since by (1.71) Uj,k = Uj−1,2k + Uj−1,2k+1, we  have  

⋃ ⋃ 
Θc ⊂ {UM +2,k > (1 + C ′)λ2M +2} ∪  {UM +1,k < (1 − C ′)λ2M +1}. 

0≤k<2N−M−2 0≤k<2N−M−1

Since UM +2,k and UM +1,k are binomial random variables, Lemma 1.9 gives 

≤ 2N −M −1P (Θc) exp(−λ2M +2h(C ′)) + exp(−λ2M +1h(−C ′)) . 

Now 2h(C ′) ≥ 0.5823 ≥ h(−C ′) ≥ 0.575 (note that C ′ has been chosen to make 2h(C ′) 
and h(−C ′) approximately equal). By definition of M (1.77), λ2M +1 ≥ C(x + 6  log  n), and 
0.575C >  1/6, so 

P (Θc) ≤ 2−M exp(−x/6). (1.81) 

Next, to bound P1 and P2. Let  b := 2M −N −1 ≤ 1/2. Since αn(t) has stationary increments, 
we can apply Lemma 1.10. Let u := x + 6  log  n. We have by definition of M (1.77) 

nb = n2M −N −1 < Cu/2. (1.82) 

By (1.66), u <  n/3 so  b < C/6. Recalling (1.54), note that h′(t) ≡ log(1 + t). Thus h is 
increasing. For any given v >  0 it is easy  to check  that  

y 
→ yh(v/y) is decreasing for y >  0. (1.83) 

Lemma 1.10 gives 
0.28u ≤ 2N −M +2 expP1 −nb(1 − b)h 
nb 
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∣ ∣ ∑ 

√ 

( [ ] ( )) 
C 2 

< 2N −M +2 exp 
C − 1 − uh 0.28 · 
2 6 C 

by (1.83) and (1.82) and since 1 − b >  1 − C/6, so one can calculate 

P1 ≤ 2N −M +2 −u/6 e ≤ 22−M λ−1 exp(−x/6). (1.84) 

The Brownian bridge also has stationary increments, so Lemma 1.11, (1.61) and (1.82) give 

P2 ≤ 2N −M +2 exp(−(0.22u)2 /(2nb)) 

≤ 22−M λ−1 −x/6 (1.85)≤ 2N −M +2 exp(−(0.22)2 u/C) e 

since (0.22)2 /C > 1/6. 
It remains to bound P3. Fix  m ∈ A(M). A bound is needed for 

m 
P3(m) :=  P |D(m) − D(ν)| > 0.5x + 9  log  n ∩ Θ . (1.86)

ν 

For each j = 1, · · · , N  take k(j) such that m ∈ Ij,k(j). By the definition (1.68) of Ij,k, k(M) =  
m2−M − 1 and  k(j) = [k(j − 1)/2] for j = 1, · · · , N  where [x] is the largest integer ≤ x. 
From here on each double subscript j, k(j) will be abbreviated to the single subscript j, e.g.  
ej := ej,k(j). The following orthogonal expansion holds in E : 

m
1A(0,m) = 

ν
eN,0 + cj ej 

′ , (1.87) 
M<j≤N 

where 0 ≤ cj ≤ 1 for  m < j  ≤ N . To  see  this,  note  that  1A(0,m) ⊥ e for j ≤ M since 2M 
j,k′ = k(j) since  1A(0,m) has all 0’s or all 1’s on the is a divisor of m. Also,  1A(0,m) ⊥ e for k �j,k 

set where ej,k has non-zero entries, half of which are +1/2 and the other half −1/2. In an 
orthogonal expansion f = j cj fj we always have cj = (f, fj )/‖fj ‖2 where ‖v‖2 := (v, v). 
We have ‖ej ‖ = 2(j−2)/2 . Now,  (1A(0,m) , ej ) is as large as possible when the components of 
ej equal = 1/2 only for indices ≤ m, and then the inner product equals 2j−2, so  |cj | ≤  1 as  
stated. The m/ν factor is clear. 

We next have 
(−1)s(i,j,m)2j+1−i ′ ej = 2j−N eN,0 + ei (1.88) 

i>j 

where s(i, j, m)  =  0 or 1  for each  i, j, m so that the corresponding factors are ±1, the signs 
being immaterial in what follows. Let ∆j := (D, e′ j ). Then from (1.87), 

∣ m ∣ ∣D(m) − D(ν)∣ ≤ |∆j |. (1.89) ∣ ν ∣ 
M<j≤N 

Recall that Wj 
′ = (Z, ej 

′ ) (see between (1.68) and (1.69)) and D = X − Z. Let  ξj := 

(22−j /λ)1/2 Wj 
′ for M <  j  ≤ N . Then by (1.69) and the preceding statement, ξM +1, · · · , ξN 

are i.i.d. standard normal random variables. We have Uj,k = (X, ej,k ) for all j and k from the 
definitions. Then Uj = (X, ej ). Let Uj 

′ = (X, e′ j ). By (1.71) and Lemma 1.2, (1.4), 

|U ′ − Uj ξj /2| ≤  1 +  ξj 
2/8. (1.90)j 
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Let √ √ √

Lj := |Wj 

′ − Ujξj/2| = |ξj || Uj − λ2j |/2


by definition of ξj. Thus  
|∆j| ≤  Lj + 1 +  ξj 

2/8. (1.91) 

Then we have on Θ 

√ √	 √ √ 1 | Uj − λ2j | = |Uj − λ2j |/( λ2j + Uj) ≤ |Uj√− λ2j | · √ 
λ2j 1 +  1 − C ′ , 

where as before C ′ := 0.855. Then by (1.71), (1.88) and (1.3) of Lemma 1.2, 

|Uj − λ2j | ≤  2j−N |UN − n| + 2  2j−i|U ′|i 
j<i≤N 

≤ 2 + (λ(1 + C ′))1/2 2j−i/2|ξi|
j<i≤N 

√ 
on Θ, recalling that by (1.70), UN = UN,0 = n. Let  C2 := 1/(1 + 1 − C ′). It follows that 

1 √ 
Lj ≤ 2−j/2C2|ξj | + C2 1 +  C ′ 2(j−i)/2|ξj ||ξi|. (1.92)

2 
j<i≤N 

Applying the inequality |ξi||ξj | ≤ (ξ2 + ξj 
2)/2, we get the bound i 

2(j−i)/2|ξiξj | ≤  Ajξ
2	 (1.93)j 

M<j≤N j<i≤N M<j≤N 

where ⎛	 ⎞ 
1 

Aj := ⎝ 2(r−j)/2 + 2(j−i)/2 ⎠ .
2 

M<r<j  j<i≤N 

Then [ ] 
2−1/2 − 2(M−j)/2 2−1/21 

Aj ≤	 +
2 1 − 2−1/2 1 − 2−1/2 

√ 
2 − 2(M−j−2)/2≤ 1 + 	 /(1 − 2−1/2). 

√ √ 
Let C3 := C2(1 + 2) 1 +  C ′/2	 ≤ 1.19067. Then ( √	 ) ∑ ∑ ∑	 1 +  C ′ 

2(M−2)/2Lj ≤ C3 ξj 
2 + 2−j/2|ξj|C2 1 −	 |ξj|/(1 − 2−1/2) .

2 
M<j≤N M<j≤N M<j≤N 

Let	 √ 
1 +  C ′ 

(1.94) 
√	 √ √ 

2 1 +  C ′( 2 +  1)  
C4 :=	 = 

4(1 − 2−1/2) 4 
, 

and for each M let cM := 1/(4C4 2M/2 ). Then for any real number x, we  have  x(1−C42M/2x) ≤ 
cM . It follows that 

j + cM C22−j/2Lj ≤ C3ξ
2 

M<j≤N M<j≤N 
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� 

≤ C2cM 2−(M +1)/2 /(1 − 2−1/2) +  C3ξj 
2 

M<j≤N 

C22−M ∑ 
≤ √ √ + C3ξj 

2 . 
2 1 +  C ′ 

M<j≤N 

Thus, combining (1.91) and (1.94) we get on Θ 

∑ 1 ∑ 
|∆j | ≤  N + + C3 ξj 

2 . (1.95)
8 

M<j≤N M<j≤N 

We have E exp(tξ2) = (1  − 2t)−1/2 for t <  1/2 and any standard normal variable ξ such as ξj 

for each j. Since  ξM +1, · · · , ξN are independent we get ⎛⎛ ⎞ ⎞ ( ( ))(M −N )/21 ∑ 2 1 
E exp ⎝⎝ |∆j |⎠ 1Θ⎠ ≤ eN/3 1 − C3 +3 3 8 

M<j≤N 

≤ eN/321.513(N −M ) ≤ 22N −1.5M . 

Markov’s inequality and (1.89) then yield 

≤ e −x/6 −322N −1.5MP3(m) n . 

Thus 
P3 ≤ e −x/6 −323N −2.5M ≤ 2−2.5M −x/6 n e . (1.96) 

−x/6Collecting (1.81), (1.84), (1.85) and (1.96) we get that P0 ≤ (23−M λ−1 + 2−M + 2−2.5M )e . 
By (1.77) and (1.67) and since x ≥ 6 log 2 (1.66) and M ≥ 2, it follows that Theorem 1.1 holds. 

1.8 Another way of defining the KMT construction 

Now, here is an alternate description of the KMT construction as given in the previous section. 
For any Hilbert space H, the  isonormal process is a stochastic process L indexed by H such that 
the joint distributions of L(f) for  F ∈ H are normal (Gaussian) with mean 0 and covariance 
given by the inner product in H, EL(f)L(g) =  (f, g). Since the inner product is a nonnegative 
definite bilinear form, such a process exists. Moreover, we have: 

Lemma 1.12. For any Hilbert space H, an isonormal process L on H is linear, that is, for 
any f, g ∈ H and constant c, L(cf + g) =  cL(f) +  L(g) almost surely. 

Proof. The variable L(cf + g) − cL(f) − L(g) clearly has mean 0 and by a short calculation 
one can show that its variance is also 0, so it is 0 almost surely. � 

The Wiener process (Brownian motion) is a Gaussian stochastic process Wt defined for 
t ≥ 0  with mean 0  and  covariance  EWsWt = min(s, t). One can obtain a Wiener process 
easily from an isonormal process as follows. Let H be the Hilbert space L2([0, ∞), λ) where  λ 
is Lebesgue measure. Let Wt := L(1[0,t]). This process is Gaussian, has mean 0 and clearly 
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has the correct covariance. Historically, the Wiener process was defined first, and then L(f ) 
was defined only for the particular Hilbert space L2([0, ∞)) by way of a “stochastic integral” 
L(f ) =  

∫ ∞ f (t)dWt, which generally doesn’t exist as an ordinary integral but is defined as a 0 
limit in probability, approximating f in L2 by step functions. Defining L first seems much 
easier. 

The Brownian bridge process, as has been treated throughout this chapter, is a Gaussian 
stochastic process Bt defined for 0 ≤ t ≤ 1 with mean  0  and covariance  EBtBu = t(1 − u) for  
0 ≤ t ≤ u ≤ 1. Given a Wiener process Wt, it is easy to see that Bt = Wt − tW1 for 0 ≤ t ≤ 1 
defines a Brownian bridge. 

For j = 0, 1, 2, ..., and k = 1, ..., 2j let Ij,k be the open interval ((k − 1)/2j , k/2j ). Let 
Tj,k be the “triangle function” defined as 0 outside Ij,k, 1 at the midpoint (2k − 1)/2j+1, and  
linear in between. For a function f : [0, 1] 
→ R and r = 0, 1, ..., let [f ]r := f at k/2r for 
k = 0, 1, ..., 2r and linear in between. Let ( ) [ ( ) ( )]

2k − 1 1 k − 1 k 
fj,k := Wj,k(f ) :=  f 

2j+1 − f 
2j + f 

2j .
2 

Lemma 1.13. If f is affine, that is f (t) ≡ a + bt where a and b are constants, then fj,k = 0  
for all j and k. 

Proof. One can check this easily if f is a constant or if f (t) ≡ t, then use linearity of the 
operation Wj,k on functions for each j and k. � 

Lemma 1.14. For any f : [0, 1] 
→ R and r = 0, 1, ..., for  0 ≤ t ≤ 1 

r−1 2j 

[f ]r (t) =  f (0) + t[f (1) − f (0)] + fj,kTj,k(t), 
j=0 k=1 

where the sum is defined as 0 for r = 0. 

Proof. For r = 0  we  have  f (0) + t[f (1) − f (0)] = f (0) when t = 0,  f (1) when t = 1,  and  
the function is linear in between, so it equals [f ]0. Then by Lemma 1.13 and linearity of the 
operations Wj,k we can assume in the proof for r ≥ 1 that  f (0) = f (1) = 0. 

For r = 1  we  have  f0,1T0,1(t) =  0  =  f (t) for  t = 0  or  1  and  f (1/2) for t = 1/2, with linearity 
in between, so f0,1T0,1 = [f ]1, proving  the case  r = 1. Then, by induction on r, we can apply 
the same argument on each interval Ir,k , k = 1, ..., 2r , to prove the lemma. � 

The following is clear since a continuous function on [0, 1] is uniformly continuous: 

Lemma 1.15. If f is continuous on [0, 1] then [f ]r converges to f uniformly as r → ∞. 

It follows that for any f ∈ C[0, 1], 

∞ 2j 

f (t) =  f (0) + t[f (1) − f (0)] + fj,kTj,k(t), 
j=0 k=1 

where the sum converges uniformly on [0, 1]. Thus, the sequence of functions 

1, t, T0,1 , T1,1, T1,2, ..., Tj,1 , ..., Tj,2j , Tj+1,1, ..., 
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is known as the Schauder basis of C[0, 1]. This basis fits well with a simple relation between 
the Brownian motion or Wiener process Wt, t  ≥ 0, and the Brownian bridge Bt, 0  ≤ t ≤ 1, 
given by Bt = Wt − tW1, 0  ≤ t ≤ 1. Both processes are 0 at 0, and their Schauder expansions 
differ only in the linear “t” term  where  W. has the coefficient W1 and B. has the coefficient 0, 
by the following fact: 

Lemma 1.16. Wj,k(B.) =  Wj,k(W.) for all j = 0, 1, ... and k = 1, ..., 2j . 

Proof. We need only note that Wj,k(·) is a linear operation on functions for each j and k and 
Wj,k(tW1) = 0 by Lemma 1.13. � 

Lemma 1.17. The random variables Wj,k(B.) for j = 0, 1, ... and k = 1, ..., 2j are independent 
with distribution N (0, 2−j−2). 

Proof. We have by the previous lemma 

1 
Wj,k(B.) =  Wj,k(W.) =  W(2k−1)/2j+1 − 

2 
W(k−1)/2j + Wk/2j 

1 
= L(1[0,(2k−1)/2j+1]) − 

2 
L(1[0,(k−1)/2j ]) +  L(1[0,k/2j ]) 

which by linearity of the isonormal process L, Lemma 1.12, equals L(gj,k) where  

1 
gj,k := 1[0,(2k−1)/2j+1] − 

2
1[0,(k−1)/2j ] + 1[0,k/2j ] 

1 
=

2
1((k−1)/2j ,(2k−1)/2j+1] − 1((2k−1)/2j+1 ,k/2j ] . 

(These functions gj,k, multiplied by some constants, are known as Haar functions.) To finish 
the proof of Lemma 1.17 we will use the following: 

Lemma 1.18. The functions gj,k and gj′,k′ are orthogonal in L2([0, 1]) (with Lebesgue mea-
sure) unless (j, k) =  (j′, k′). 

Proof. If j = j′, the functions gj,k are orthogonal for different k since they are supported on 
non-overlapping intervals Ij,k. If  j �= j′, say  j′ < j, then  gj,k is 0 outside of Ij,k, equal  to  1/2 
on the left half of it and −1/2 on the right half, while gj′ ,k′ is constant on the interval, so the 
functions are orthogonal, proving Lemma 1.18. � 

Returning to the proof of Lemma 1.17, we have that L of orthogonal functions are inde-
pendent normal variables with mean 0, and E(L(f )2) =  ‖f ‖2, where  ∫ 1 

‖gj,k ‖2 = gj,k(t)2dt = 1/2j+2 

0 

2since gj,k equals 1/4 on an interval of length 1/2j and is 0 elsewhere. So Lemma 1.17 is proved. 

There are other ways of expanding functions on [0, 1] beside Schauder bases, for example, 
Fourier series. Fourier series have the advantage that the terms in the series are orthogonal 
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functions with respect to Lebesgue measure on [0, 1]. The Schauder basis functions are not 
orthogonal, for example the constant function 1 is not orthogonal to any of the other functions 
in the sequence, and the functions are all nonnegative, so those whose supports overlap are 
non-orthogonal. However, the Schauder functions are indefinite integrals of constant multiples 
of the orthogonal functions gj,k or equivalently constant multiples of Haar functions, and it 
turns out that the indefinite integral fits well with the processes we are considering, as in the 
above proof. In a sense, the Wiener process Wt is the indefinite integral of the isonormal 
process L via Wt = L(1[0,t]). 

Let Φm be the distribution function of the binomial bin(m, 1/2) distribution, Φm(x) :=  0  ∑k mfor x <  0, Φm(x) :=  j=0 k 2−m for k ≤ x < k  + 1,  k = 0, 1, ..., m − 1, and Φm(x) :=  1  for  
x ≥ m. For a function F from R into itself let F ←(y) := inf{x : F (x) ≥ y}, as in Lemma 
1.3. Let H(t|m) := Φ← 

m (t) for  0  < t <  1. 
Now to proceed with the KMT construction, for a given n, let  B(n) be a Brownian bridge 

process. Let V0,1 := n. Let  V1,1 := H(Φ(2W0,1(B(n)))|n), V1,2 := V0,1 − V1,1. By Lemma 
1.17, 2W0,1(B(n)) has  law  N (0, 1), thus Φ of it has law U [0, 1] by Lemma 1.3(a), and V1,1 has 
law bin(n, 1/2) by Lemma 1.3(b). We will define empirical distribution functions Un for the 
U [0, 1] distribution recursively over dyadic rationals, beginning with Un(0) = 0, Un(1) = 1, 
and Un(1/2) = V1,1/n. These values have their correct distributions so far. Now given Vj−1,k 

for some j ≥ 2 and  all  k = 1, ..., 2j−1 , let  

Vj,2k−1 := H(Φ(2(j+1)/2 Wj−1,k(B(n))|Vj−1,k ) 

and Vj,2k := Vj−1,k − Vj,2k−1. This completes the recursive definition of the Vj,i. Then  
Wj−1,k(B(n)) has  law  N (0, 2−j−1) by Lemma 1.17, so 2(j+1)/2 times it has law N (0, 1), and Φ 
of the product has law U [0, 1] by Lemma 1.3(a), so Vj,2k−1 has law bin(Vj−1,k, 1/2) by Lemma 
1.3(b). Let Un(1/4) := V2,1/n, Un(3/4) := Un(1/2) + V2,2/n, and so on. Then Un(k/2j ) for  
k = 0, 1, ..., 2j have their correct joint distribution and and when taken for all j = 1, 2, ..., they 
uniquely define Un on [0, 1] by monotonicity and right-continuity, which has all the properties 
of an empirical distribution function for U [0, 1]. 

With the help of Lemma 1.2, one can show that the Schauder coefficients of the empirical 
process αn := n1/2(Un − U ), where U is the U [0, 1] distribution function, are close to those 
of B(n). Lemma 1.2 has to be applied not only for the given n but also for n replaced by Vj,k, 
and that creates some technical problems. For the present, the proof in the previous section 
is not rewritten here in terms of the present construction. 
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