
18.657 PS 2 SOLUTIONS

1. Problem 1

(1) Let Y1, . . . , Yn be ghost copies of X1, . . . , Xn. Then we have

E

[
1

sup

∣∣∣ ∑n n∣ 1∣ σi[f(Xi)− E[f(X)]]

∣∣]∣ ∣∣∣∣ = E

[
sup

∣ ∑∣∣ σi[f(Xi)− E[f(Yi)]]
f n n∈F i=1

∣∣]∣
≤ E

∣∣[f∈F i=1

n
1

sup σi[f(Xi) f(Yi)] ,
f

∣
n∈F

∣∣ ∑
i=1

−

∣∣]∣
by Jensen’s inequality,

∣∣ ∣∣

= E

[
sup ,
f

∣∣∣ n∣ 1∣ [f(Xi) f(Yi)]
n∈F

∑
i=1

−

∣∣]∣
as σi[f(Xi)− f(Yi)] and f(Xi)

∣
− f(Yi) have the same distribution,

∣

= E

[
sup
f∈F

∣∣∣∣∣ ∑n1
[(f(Xi)− E[f(Xi)])− (f(Yi) E

n
i=1

− [f(Yi)])]

∣∣]
1

∣
≤ 2E

[
sup

∣∣∣ ∑n∣∣ [f(Xi) (

∣
f n∈F i=1

− E[f X

∣
i)]]

]

by the triangle inequality.

∣∣∣∣∣ ,

(2) The distribution of gi is the same as that of |gi|σi, so we can write

E

[
n n

sup
∑

gif(Xi) i
g

i

]
= EXi,σ

f

[
Egi

[
sup i
f=1

∑
i=1

| |σif(Xi) | Xi, σi
∈F ∈F

]]

≥ EXi,σi

[
n

sup [
f

∑
E

i=1

|gi|]σif(Xi)
∈F

]
,

by Jensen’s inequality, √ n
2

= E

[
sup

∑
σif(Xi)

]
,

π f∈F i=1

using the first absolute moment of the standard Gaussian.
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(3) We compute:

Rn(F + h) = E

[
1

sup

∣∣∣∑n∣∣ σi(f(Xi) + h(Xi))
f n∈F i=1

∣∣]
n

1

∣
n

1≤ E sup σ

∣[ ∣∣∑∣∣∣ if(Xi)
n∈F i=1

∣∣]∣∣∣ + E
f

[
n

∣∣∣∣∑∣∣ h(Xi) ,
i=1

∣∣]∣∣∣
by the triangle inequality,

n
1

= Rn(F) + E

[
n

∣∣ ]∣∑∣ h(Xi)
i=1

∣∣∣∣ ,

2n
1≤ Rn(F) +

∣ ∣√√√√√E
n

( )  ∑
σih(Xi)

i=1

,

by Jensen’s inequality,

1
= Rn(F) +

n

√√√∑n√ E[h(Xi)2] + 2 E[σiσjh(Xi)h(Xj)]

√i=1

∑
i<j

1
= Rn(F) +

√√ n√∑E[h(X 2
i) ],

n
i=1

by symmetry,

1≤ Rn(F) +
n

√
n‖h‖2∞

= Rn(F) +
‖h‖∞

.
n

(4) By the triangle inequality, we have

n k
1

Rn(F1 + . . .+ Fk) = E

 sup

∣∑
j(Xi

fj∈Fj
n

∣∣
σi
∑

f )

∣

∑k
∣∣ ∣∣

E

∣∣ ∣
≤

∣
j=1

[ i=1 j=1

1
sup
fj∈Fj

n

∣∣∣∑n∣∣ σifj(Xi)
i=1

∣∣]
k

∣
=

∣∣
∑

Rn(
j=1

Fj).



18.657 PS 2 SOLUTIONS 3

(5) The supremum over different choices of fj is at least the supremum over a single repeated
choice:

n k
1

Rn(F︸ + .︷︷. .+ F︸) = E

 sup σi fj(Xi)
fj n∈F

∣∣∣
i=1

∑
j=1

∣
k

∑ ∣∣∣ ∣
n k

1

∣∣
≥ E

sup

∣ ∣
f n∈F

∣∣∣∣∑∣∣ σi
i=1

∑
f(Xi)[ ∣ j=1

∣∣∣∣
σ

∣
= kE sup

∑n1 ∣∣∣∣ if(Xi)
f n

∣
∈F i=1

∣]
= kRn(F),

∣∣∣
which provides the reverse bound to that of (4), establishing

∣
equality in this case.
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2. Problem 2

(1) Let A be a maximum 2ε-packing of (T, d); let B be a minimum ε-covering. As B is an ε-
covering, for each a ∈ A there exists some choice of b(a) ∈ B such that d(a, b(a)) ≤ ε. This
map b : A→ B is an injection: by the triangle inequality, no point in B can be within ε of two
points of A, as these are at least 2ε apart. Thus |A| ≤ |B|, so that D(T, d, 2ε) ≤ N(T, d, ε).

Let C be maximum ε-packing. Note that C is in fact an ε-covering: if some point of T
had distance greater than ε to each point of C, then we could add it to C to produce a larger
ε-packing, contradicting maximality. It follows that N(T, d, ε) ≤ D(T, d, ε).

(2) Let Bn denote the Euclidean ball in Rn. Let u ∈ Bn and v ∈ Bm. Then we can write
u = u + ε∗ u, v = v + ε 1

∗ v, where u∗ ∈ Nn, v∗ ∈ Nm, εu ∈ Bn, and εv4 ∈ 1Bm. We compute:4

‖M‖ = sup u>Mv
u∈Bn,v∈Bm

= sup u>Mv + ε∗
>
uMv + u>Mε

u ,v ,ε ,εv
∗ ∗ v

∗ ∗ u

≤
(

sup u>Mv

)
+

(
sup ε> u>

u ∈Nn,v∗∈N∗ m

∗ ∗ uMv
1 n

∗

)
+

(
sup Mεv

n( ) εu∈ B ,v ∈Nm u∈B ,ε ∈ 1 m
4 ∗ v B4

)
1 1≤ max u>Mv + ‖M‖+ ‖M‖.

u
∗∈Nn,v∗∈Nm

∗
4 4∗

Rearranging, we have
‖M‖ ≤ 2 max u>Mv

u∗∈Nn,v∗∈Nm
∗ ∗

as desired.
(3) By independence and Hoeffding’s lemma, we have, for all s > 0,

E[exp(s u>Mv)] =
∏

E[exp(s uiMijvj)]
i,j

≤
∏ 1

E s
2

i,j

[
exp

(
2 u2i v

2
j

)]

= E

exp

1
s2 2

2

∑
u2i vj

i,j


≤ exp(s2/2),

whenever u ∈ Bn and v ∈ Bm.
d

Recall from the notes that Bd has covering number at most 3 , so that we are max-ε

imizing over |Nn × Nm| ≤ 12n+m points. It follows from the standard maximal inequality
for subgaussian random variables, or else by explicitly using Jensen

( )
with log and exp and

replacing a maximum by a sum, that

E
√

‖M‖ ≤ 2
√

2 log(12m+n) ≤ C( m+
√
n).
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3. Problem 3

(1) Let A be an ε-net for [0, 1]; we can construct one with size at most 1 + 1. Let Xpre denote2ε
the set of non-decreasing functions from {x1, . . . , xn, } to A, and let X be the set of functions
[0, 1]→ [0, 1] defined by piecewise linear extension of functions in Xpre (and constant extension
on [0, x1] and [xn, 1]). It is straightforward to see that X is an ε-net for (F , dx ): given f ,∞ ∈ F
we define g ∈ Xpre by taking g(xi) to be the least point of A lying within ε of f(xi), and then
the function in X defined by extension of g is within ε of f .

It remains to count X. Let a1 < . . . < ak be the elements of A, where k ≤ 1 +1. Functions2ε
f ∈ X are uniquely defined by the count for each 1 ≤ i ≤ k of how many xj satisfy f(xj) = ai.
A naive count of the possibilities for these values yields

N(F , dx , ε) ≤ |X| ≤ (n+ 1)1+1/2ε n∞ ≤ 2ε,

valid for n ≥ 3.
(2) As N(F , dx2 , ε) ≤ N(F , dx , ε), and f 1 for all f , the chaining bound yields∞ | | ≤ ∈ F

12Rn ≤ inf 4ε+ √
∫ 1√

logN(F , dx d
0 n 2 , t) t

ε> ε

12 1

≤ inf 4ε+
ε>0

√ t
n

∫
ε

√
−1 log ndt

log n
= inf 4ε+ 24
ε>0

√
(1

√
− ε)

≤ lim 4ε+ 24
ε→0

√ n

log n
(1

√
n

− ε)

= 24

√
log n

.
n

(3) We bound N(F , dx1 , ε) ≤ N(F , dx , ε)∞ ≤ n2/ε√ . The theorem in Section 5.2.1 yields

2 log(2N(Rn ≤ inf ε+
F , dx1 , ε))

ε n

2ε−1 log n+ 2 log 2≤ inf ε+
ε

√
.

n

Setting the two terms equal, to optimize over ε (in asymptotics), we have

ε3/2
2 log n+ 2ε log 2 2 logn

=
n

≈ ,
n

for a bound of

√ √

Rn .

(
log n

n

)1/3

,

which is strictly weaker than the chaining bound.
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4. Problem 4

(1) We adapt the proof from class to the case of a penalized, rather than constrained, norm.
¯Let Wn be the span of the functions k(xi,−). We can decompose any function g uniquely

¯ ¯as g = gn + g⊥, where gn ∈ Wn and g⊥ ⊥ Wn. As in class, g⊥(xi) = 〈g⊥, k(xi,−)〉 = 0, so
that g(xi) = gn(xi).

Plugging in to the objective function:

ψ(Y − g) + µ‖g‖2W = ψ(Y − gn) + µ‖g 2 2
n‖W + µ‖g⊥‖W .

For any fixed gn, this is a constant plus µ‖g⊥‖2W , which is minimized uniquely at g⊥ = 0.
ˆ ¯Thus (unfixing gn) any minimizer∑ f must lie in Wn, as desired.

ˆ(2) As f ∈ ¯ ˆ n ˆWn, write f = i=1 θik(xi,−), so that f̂ = Kθ and ‖f‖2W = θ>Kθ. Then the
first-order optimalit( y conditions read

0 = ∇ φ(Y − f̂) + µ‖f̂‖2W

= ∇
(
Y>Σ−1/2Y

)
− 2Y>Σ−1/2Kθ + θ>KΣ−1/2Kθ + µθ>Kθ

= 2

)
− KΣ−1/2Y + 2KΣ−1/2Kθ + 2µKθ.

Rearranging, and recalling that Kθ = f̂, we have

(KΣ−1/2 + µIn)f̂ = KΣ−1/2Y,

as desired.
(3) As above, it suffices to consider f , g ∈ W̄n, so that we can write f = Kθf , g = Kθg. From

ˆthe definition of f , we have

ψ(f + ξ − f̂) + µ‖f̂‖2W ≤ ψ(f + ξ − g) + µ‖g‖2W .
Separating out the contribution of ξ, we obtain

ψ(f− f̂) + φ(ξ) + ξ>Σ−1/2(f− f̂ ˆ) + µ‖f‖2W ≤ ψ(f− g) + ψ(ξ) + ξ>Σ−1/2(f− 2g) + µ‖g‖W .
Rearranging,

ψ(f− f̂) ≤ −ξ>Σ−1/2(f− f̂ ˆ)− µ‖f‖2W + ψ(f− ) + ξ>Σ−1/2g (f− g) + µ‖g‖2W
= ψ(f− g) + 2µ‖g‖2 + ξ>Σ−1/2(f̂ ˆ

W − g)− µ‖f‖2W − µ‖g‖2W
µ≤ ψ(f− g) + 2µ‖ ˆg‖2W + ξ>Σ−1/2(f̂− g)−
2
‖f − g‖2W ,

by the inequality ‖a − b‖2 ≤ 2‖a‖2 + 2‖b‖2 . Let Z = Σ−1/2W W W ξ, which is distributed as
N (0, I). Continuing the line of algebra,

µ
ψ(f− f̂) ≤ ˆψ( − g) + 2µ‖g‖2f W + Z>(f̂− g)−

2
‖f − g‖2W

= ψ(f− g) + 2µ‖g‖2 µ
W + Z>K(θ ˆ θg) (θ ˆ θg) K(θ ˆ θg)f − −

2 f −
>

f −

1≤ ψ(f− g) + 2µ‖g‖2W + Z>KZ,
µ

by the inequality
µ 1

a>Pb ≤ a>Pa+ b>Pb
2 µ

for any PSD matrix P . Now since
n

Z>KZ =
∑ n

Zi〈k(xi,−), k(xj ,
i,j

−)〉W =
=1

‖
∑

Zik(xi,
i=1

−)‖2W ,

¯we conclude by taking the infimum over g ∈Wn, which equals the infimum over g ∈W .
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(4) This follows from the previous part together with the observation

E

∥∥∥∥∥
∑ 2n n

Zik(xi,−)

∥∥∥∥∥ = E∑Z 2
iZjKij

i=1 W i,j


¯(5) It is sufficient to prove the bound for f Wn, since

 =
∑

E[Zi ]Kii = Tr(K).
i=1

∈ only its evaluations at the design points
matter. For the Gaussian kernel we have k(x, x) = 1, so that Tr(K) = n. Applying the
previous part, and taking the case g = f as an upper bound on the minimizer, we have

n n
E[ψ(f− f̂)] ≤ ψ(f− f) + 2µ‖f‖2W + = 2µ .

µ
‖f‖2W +

µ

Taking µ = ‖f‖W
√
n/2 gives the result.
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