18.657 PS 2 SOLUTIONS

1. PROBLEM 1

(1) Let Y1,...,Y, be ghost copies of X,...,X,. Then we have
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by Jensen’s inequality,
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as o;[f(X;) — f(Y3)] and f(X;) — f(Y;) have the same distribution,

=E sup %Z[(f(Xi) —E[f(X)]) - (f(Vi) — E[f(Yi)D]‘
< 2E | sup 1Z[f<xi>—E[f<Xz>nH,
feF |

by the triangle inequality.

(2) The distribution of g; is the same as that of |g;|o;, so we can write
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by Jensen’s inequality,

using the first absolute moment of the standard Gaussian.
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(3) We compute:
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by the triangle inequality,

by Jensen’s inequality,
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by symmetry,
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(4) By the triangle inequality, we have
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(5) The supremum over different choices of f; is at least the supremum over a single repeated

choice:
[ 1 n k
R, (F+...4+4F)=E|sup — o; (X5
CRSSEE ALY AN MO MALS
[ 1 n k
> E |sup — oy f(Xi)
fer i ;
kE |s 1 i f(X3)
= up — O i
fer iz
=kR,(F),

which provides the reverse bound to that of (4), establishing equality in this case.
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2. PROBLEM 2

(1) Let A be a maximum 2e-packing of (T,d); let B be a minimum e-covering. As B is an e-
covering, for each a € A there exists some choice of b(a) € B such that d(a,b(a)) < e. This
map b: A — B is an injection: by the triangle inequality, no point in B can be within ¢ of two
points of A, as these are at least 2¢ apart. Thus |A| < |B|, so that D(T,d,2¢) < N(T\,d,¢).

Let C' be maximum e-packing. Note that C is in fact an e-covering: if some point of T
had distance greater than € to each point of C, then we could add it to C' to produce a larger
e-packing, contradicting maximality. It follows that N(T,d,e) < D(T,d,¢).

(2) Let B™ denote the Euclidean ball in R™. Let w € B™ and v € B™. Then we can write
U= Uy + Ey, U= Vs + &, Where uy € Ny, vy € Ny, € € %B”, and ¢, € %Bm. We compute:

M| = sup u' Mv
u€B™ veB™

= sup U*TMU* + EIMU* + UTMEU

Us, Vs y€uyEv

< < sup UIM’U*) + sup EIMU* + sup u' Me,
Uy €Ny UL EN, €u€1B" v, EN, u€B",e, €5 B™

1 1
< max  u, Mv, | + =| M| + =||M]|.
Ux ENp U« €Ny 4 4

Rearranging, we have

M| <2 max  u] Muv,
Ux ENp s ENppy

as desired.
(3) By independence and Hoeffding’s lemma, we have, for all s > 0,

Elexp(su' Mv)] = H E[exp(s u; M;jv;)]

< HIE [exp (352 ufv?)}

1,7
1
_ 2 2,2
=E |exp 39 g Uz vj
i3

< exp(s°/2),
whenever u € B™ and v € B™.

Recall from the notes that B? has covering number at most (g)d, so that we are max-
imizing over |N,, X N,,| < 12""™ points. It follows from the standard maximal inequality
for subgaussian random variables, or else by explicitly using Jensen with log and exp and
replacing a maximum by a sum, that

E[M| < 2¢/2log(1277) < C(yvm + V).
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3. PROBLEM 3

(1) Let A be an e-net for [0, 1]; we can construct one with size at most 5= + 1. Let Xpe denote
the set of non-decreasing functions from {z1,...,z,, } to A, and let X be the set of functions
[0,1] — [0, 1] defined by piecewise linear extension of functions in X, (and constant extension
on [0,21] and [z, 1]). It is straightforward to see that X is an e-net for (F,d% ): given f € F,
we define g € Xpre by taking g(z;) to be the least point of A lying within € of f(z;), and then
the function in X defined by extension of g is within ¢ of f.

It remains to count X. Let a; < ... < aj be the elements of A, where k < i +1. Functions
f € X are uniquely defined by the count for each 1 < ¢ < k of how many z; satisfy f(z;) = a;.
A naive count of the possibilities for these values yields

N(]_- dx E) < |X| < (n+ 1)1+1/25 < TLQE,

valid for n > 3.
(2) As N(F,d3,e) < N(F,d%,¢), and |f| <1 for all f € F, the chaining bound yields
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n

N(F,d®,,e) < n?*. The theorem in Section 5.2.1 yields

)y Yoo
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(3) We bound N(F,d7,¢)

<
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IN

Setting the two terms equal, to optimize over e (in asymptotics), we have

3/2 \/21ogn+2€log2 ~ \/210gn
n n

)

for a bound of

logn 1/3
n K

ros

which is strictly weaker than the chaining bound.
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4. PROBLEM 4

(1) We adapt the proof from class to the case of a penalized, rather than constrained, norm.

Let W, be the span of the functions k(z;, —). We can decompose any function g uniquely
as g = g, + g+, where g, € W,, and g+ L W,. As in class, g*(z;) = (¢+, k(2;,—)) = 0, so
that g(z;) = gn(z;).

Plugging in to the objective function:

(Y —g) + ullglliy = (Y — ) + ullgalliy + wllg™ I3
For any fixed g,, this is a constant plus pg*||%,, which is minimized uniquely at g+ = 0.
Thus (unfixing g,,) any minimizer f must lie in W,,, as desired.
(2) As f € W, write f = Y1, 0;k(x;,—), so that £ = K6 and | f||3 = 6" K6. Then the
first-order optimality conditions read
0=V (6(Y = 1)+ ullflI3)

—v (YTZ_l/QY oY S 12K0 4+ 0TKEV2K0 + uGTKH)

= 2KN"YV2Y 4+ 2KYV2K0 + 2uK0.
Rearranging, and recalling that K6 = £, we have

(KX™Y2 4 ul)t = Kx~Y2%Y,

as desired. )
(3) As above, it suffices to consider f, g € W, so that we can write f = K6y, g = K6f,. From

the definition of f , we have

V(E+E—F)+pllflll <vE+E—g) +ulglly

Separating out the contribution of &£, we obtain
G(E—F) + (&) + TSV (8 = B) + pllfllfy < (£ —g) + (&) + TSV (£ —g) + ullgll-
Rearranging,
YE—F) < TSV (E =) —pll I+ (E —g) + TSV (E —g) + plglliy
= ¢(f —g) +2ullgllty +£SV2E —g) — ull f 13 — plgliy
< (2 —g) +2ulglfy +§TS72E - g) - £ - gl

by the inequality ||a — b||%, < 2|al|, + 2||b||Z,. Let Z = X~1/2¢, which is distributed as

N(0,I). Continuing the line of algebra,
R . T
v(f =) <y(t —g) + 2ulgliy + 27 (E — ) - S — gliiv

I
— (e~ g) + 2ullglly + ZTK (07— 0,) — 507~ 0,) K (85 - 0,)

— —

1
< o(f —g) + 2ulgllfy + ;ZTKZ
by the inequality
1
a'Pb<EaTPa+ ~bTPD
2 1%
for any PSD matrix P. Now since
n n
ZVKZ =Y Zilk(zi, =), k(zy, =)w = | Y Zik(xi, =) 3y,
i,j=1 i=1

we conclude by taking the infimum over g € W,,, which equals the infimum over g € W.
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(4) This follows from the previous part together with the observation

n 2

Z Zlk(ﬁz, —)

i=1

=E | ZZKi;| =Y E[Z}|K;; = Tr(K).
W i,j i=1

E

(5) It is sufficient to prove the bound for f € W, since only its evaluations at the design points
matter. For the Gaussian kernel we have k(z,z) = 1, so that Tr(K) = n. Applying the
previous part, and taking the case g = f as an upper bound on the minimizer, we have

E[p(£ — £)] < (£ — £) + 20 £ + g = 2|l fI% + g

Taking p = || f|lw+/n/2 gives the result.
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