18.657 PS 3 SOLUTIONS

1. PROBLEM 1

(1) Symmetry is clear. Let K; and K> be the PSD Gram matrices of k; and ko, respectively.
Then the Gram matrix K of k is simply the Hadamard (or Schur) product K; e K5; we wish
to see that this is PSD.

The Kronecker product K; ® K5 is PSD: its eigenvalues are simply the pair products of an
eigenvalue of K; with an eigenvalue from Ko, as is easily seen from the identity

(Kl & Kg)(’U ® w) = (Kl’U) ® (ng)

when v and w are eigenvectors of K; and Ks, respectively. Now the Hadamard product
K = K, e K5 is a principal submatrix of A ® B, and a principal submatrix of a PSD matrix
is PSD.

(There are many good approaches to this part.)

(2) Treating g as a real vector indexed by C, we have K = gg', and a matrix of this form is
always PSD.

(3) The Gram matrix K of k is simply Q(K1), where K is the Gram matrix of k1, and where the
multiplication in the polynomial is Hadamard product. From (1), the PSD matrices are closed
under Hadamard product, and it is a common fact that they are closed under positive scaling
and addition; thus they are closed under the application of polynomials with non-negative
coefficients.

(4) Let T,-(z) be the rth Taylor approximation to exp(z) about 0, a polynomial with non-negative
coefficients. Then T,.(k1) converges to k = exp(k1) as r — oo; equivalently, T,.(K7) converges
to K = exp(K7), where K and K; are the Gram matrices of k and k;. Here exp is the
entry-wise exponential function, not the “matrix exponential”.. From (3), T,.(K7) is PSD. As
the PSD cone is a closed subset of R"*™ (it’s defined by non-strict inequalities x " Mz > 0),
the limit K is PSD, and this is the Gram matrix of K.

(5) Applying (2) to the function f(u) = exp(—||lu|/?), the kernel ki(u,v) = exp(—|ul|* — [|v|?)
is PSD. Moreover the kernel ko(u,v) = 2u'v is PSD: if C is a set of vectors, and we let the
matrix U be defined by taking the elements of C as columns, then the Gram matrix of ko is
2U TU which is PSD. By (4), the kernel k3(u,v) = exp(2u'v) is PSD. By (1), the kernel

k(u,v) = k1 (u, v)ks(u, v) = exp(—||ull* + 2u"v — [|v]|*) exp(—|ju — v||*)
is PSD.
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2. PROBLEM 2

n

Suppose z € R?% we wish to find y € C minimizing ||z — y||*> = Y i, (z; — y;)>. As the
constraints defining C' apply to each y; separately, the problem amounts to finding, for each
i, a value —1 < y; < 1 minimizing (z; — y;)%. This is clearly achieved at

xi/|wi) i |z > 1,
in{

T; otherwise.

This formula is exact, so there is no convergence issue; effectively the method converges
perfectly after one update on each coordinate.

Let z € R? be given; we want 2 € A minimizing the ¢5 distance f(x) = ||z — z||. We apply
mirror descent, following the corollary on page 7 of the Lecture 13 notes. The objective
is clearly 1-Lipschitz, with gradient Vf(z) = (x — z)/||z — z||, so we obtain the following
convergence guarantee at iteration k:

Flaf) — flat) </ 28

(a) §F is convex: certainly any convex combination of symmetric matrices is symmetric, and
if A,B € g}, then

"M+ (1 =NB)z=Xx" Az + (1 — Nz Bz
is a convex combination of non-negative reals, thus non-negative, so a convex combination
of PSD matrices is PSD.
§ is closed in R™*" as it is defined as an intersection of a linear subspace (the symmetric
matrices) and the half-spaces (M,v'v) > 0 for v € R", all of which are closed; an
intersection of closed sets is closed.

(b) Let A € §,. As § is convex and closed, and the function f(B) = 3||A— B||% is convex, a
matrix B minimizes f over S, iff it satisfies first-order optimality. Specifically, we must
have that Vf(B) =5, wizix; , for some p; > 0 and some x; for which B is tight for the
constraint ;) Bx; > 0 defining S;}.

We compute the gradient:

V(%HA - B|%) = v% tr(A* —2AB + B*) = B — A.

Thus, if we can write B—A=)", piziz, as above, then we certify B as optimal.
Write the eigendecomposition A = UXU T, and let B =UX, U, where ¥, replaces the
negative entries of ¥ by zero. Then
B-A=UE;-SU" = > (-%i)UU/,
1:2;; <0
and we have U,' BU; = (X4 ) = 0, thus fulfilling first-order optimality.
We begin with the first claim. In class, we proved that

(m(x) — 2, 7(x) — 2) <
whenever z € C. Applying this with z = 7(y), we have
(m(z) = z,m(z) —7(y)) <0.
Summing a copy of this inequality with the same thing with « and y reversed, we have
(r(z) —m(y) — (x —y),7(x) —7(y)) <0,
m(z) =7 (y)I® < (& -y, 7(2) = 7(y)) < |z —ylll7(2) - 7],

by Cauchy—Schwartz. Cancelling ||7(x) — 7(y)|| from both sides yields the first claim.
The second claim follows by specializing to the case y € C, for which n(y) = y.
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3. PROBLEM 3

(1) (a) By definition, f*(y) = sup, 2y — =. When y > 0, a sufficiently large choice of 2 makes
the objective arbitrarily large, and the supremum is infinite. When y < 0, the objective is
bounded above by 0; for y = 0, this is achieved as x — oo, whereas for y < 0, first-order
optimality conditions show that the optimum is achieved at x = (—y)_l/ 2. at which
f*(y) = —2/=y. We have D = (—o0,0].

(b) By definition, f*(y) = sup,cpay' @ — %|x[3. The gradient of the objective is y — x, so
first-order optimality conditions are satisfied at = y, and we have f*(y) = 3|3 (f is
self-conjugate). Here D = R,

(¢) By definition, f*(y) = sup,cgay 'z — log Z;l:l exp(z;). The partial derivative in x; of

the objective function is
exp ;

Yi Zj expz; )
so the gradient may be made zero whenever y lies in the simplex A, by taking x; = logy;.
For such y, we thus have f*(y) =, y; logy;.
We next rule out all y € A, so that D = A. Consider z of the form (A, A, ..., A), for which
the objective value is A) ", y; — A —logd. When ). y; # 1, this can be made arbitrarily
large, by taking an extreme value of A\. On the other hand, if any coordinate y; of y is
negative, then taking = to be supported only on the ith coordinate, the objective value is
yix; —log((d — 1) + exp x;), which is arbitrarily large when we take x; to be a sufficiently
large negative number. So y must lie in the simplex A.
(2) For all x € C and y € D, we have f*(y) > y'x — f(w), so that y "o — f*(y) < f(z). Thus
f(z) =supyepy 'z — f*(y) < fla).
(3) Here C = R? so that the supremum is either achieved in some limit of arbitrarily distant
points, or else at at point satisfying first-order optimality. The first case can actually occur,
e.g. when d =1, f(z) = —exp(x), and y = 0. In the other case, first-order optimality is that

0=V.(y e~ f(z) =y - Vi),
so that Vf(z*) = y.
(4) We will need the gradient of f*. As f is strictly convex, y = V f(z) is an injective function of
z, so we can write x = (Vf)~!(y). Then

) =y'z" - f(a*)
=y (VH W) = F(VH W),
Vi) = (VH )+ DIV W)yl — DIV WIVVH) ) ®)]
=(VH ),

where D f(a)[b] denotes the Jacobian of f, taken at a, applied to the vector b.
We now compute the Bregman divergence:

Dy-(Vf(), V(@) = (Vi) — £ (V@) = (V) (V) - Vi)
=ViWy—fy) = Vi@ v+ flx) -z (Vi(y) - V(@)
=f@) = fly) = (VW) (= —v)
= Dy(z,y).
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4. PROBLEM 4

(1) Adapting the proof of convergence of projected subgradient descent from the lecture notes,
we have:

flzs) = f(2") < g;r(xs —a")

= %(% —Ysr1) ' (s — %)
llgsl 2 12 *1)2
< W(les = ystall” + llzs = 277 = [lys41 — 27[%)
= Al B8, s = a7,
as Ts — Ys4+1 has norm 7,
< 77”95” + HgS” (||$s _ S*||2 _ Hxs—i-l _ JJ*”2),

-2 2n

as the projection operator is a contraction.

Summing over s, and using the bounds ||z; — z*|| < R and ||gs|| < L, we have

_ . nL LR?
f(xs)_f(I)ST—F%—k-

Taking n = R/Vk, we obtain the rate LR/Vk.
(2) (a) Starting from the definition of S-smoothness:

Fesn) = (@) < VI @) @ars = 22) + 5 rass — 2.
= ”stf(xs)T(ys - Is) + g'YsQ”ys - 555”2

* /B
< ”stf(fES)T(fE —zs) + 5%2R2,

as f(zs)Tys < f(zs) Ty for all y € C,

< W(F() = F(as)) + SR,

by convexity.

(b) We induct on k. Continuing from the inequality above by subtracting f(z*) — f(zs) from
both sides, we have

Fasn) = f@") < (1 =7)(f(xs) = f(a) + §7§R27

or, if we define §; = f(zs) — f(z*),

5.9—1—1 S (1 - ’75)65 + §7§R2
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Specializing to s = 1, and noting that v; = 1, we have that §, = SR?/2 < 28R?/3, so
that the base case of k = 2 is satisfied. Now proceeding inductively, we have

Ok < (1 —yr—1)0k—1 + é'yz,lRQ

2
2(k — 2)BR?*  2BR?
< 2 + SR
by induction and the definition of v;_1,
2(k — 1)BR?
2
< 28R 7
T k+1

completing the induction.
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