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Recall the following definitions from last time:

Definition: A function K : X × X 7→ R is called a positive symmetric definite kernel

(PSD kernel) if

1. ∀x, x′ ∈ X ,K(x, x′) = K(x′, x)

2. ∀n ∈ Z+,∀x1, x2, . . . , xn, the n× n matrix with entries K(xi, xj) is positive defi-
nite. Equivalently, ∀a R1, a2, . . . , an ∈ ,

n
∑

aiajK(xi, xj)
i,j=1

≥ 0

Definition: Let W be a Hilbert space of functions X 7→ R. A symmetric kernel K(·, ·)
is called a reproducing kernel of W if

1. ∀x ∈ X , the function K(x, ·) ∈ W .

2. ∀x ∈ X , ∀f ∈ W , 〈f(·),K(x, ·)〉W = f(x).

If such a K(x, ·) exists, W is called a reproducing kernel Hilbert space (RKHS).

As before, 〈·, ·〉W and ‖ · ‖W respectively denote the inner product and norm of W . The
subscript W will occasionally be omitted. We can think of the elements of W as infinite
linear combinations of functions of the form K(x, ·). Also note that

〈K(x, ·),K(y, ·)〉W = K(x, y)

Since so many of our tools rely on functions being bounded, we’d like to be able to
bound the functions in W . We can do this uniformly over x ∈ X if the diagonal K(x, x) is
bounded.

Proposition: Let W be a RKHS with PSD K such that supx∈X K(x, x) = kmax is
finite. Then ∀f ∈ W ,

sup |f(x)| ≤ ‖f‖W
√

kmax
x∈X

.

Proof. We rewrite f(x) as an inner product and apply Cauchy-Schwartz.

f(x) = 〈f,K(x, ·)〉W ≤ ‖f‖W‖K(x, ·)‖W
Now ‖K(x, ·)‖2W = 〈K(x, ·),K(x, ·)〉W = K(x, x) ≤ kmax. The result follows immediately.
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1.5.2 Risk Bounds for SVM

We now analyze support vector machines (SVM) the same way we analyzed boosting. The
general idea is to choose a linear classifier that maximizes the margin (distance to classifiers)
while minimizing empirical risk. Classes that are not linearly separable can be embedded
in a higher dimensional space so that they are linearly separable. We won’t go into that,
however; we’ll just consider the abstract optimization over a RKHS W .

Explicitly, we minimize the empirical ϕ-risk over a ball in W with radius λ:

ˆ ˆf = min Rn,ϕ(f)
f∈W,‖f‖W≤λ

ˆ ˆ ˆThe soft classifier f is then turned into a hard classifier h = sign(f). Typically in SVM ϕ
is the hinge loss, though all our convex surrogates behave similarly. To choose W (the only
other free parameter), we choose a PSD K(x1, x2) that measures the similarity between two
points x1 and x2.

As written, this is an intractable minimum over an infinite dimensional ball {f, ‖f‖W ≤
λ}. The minimizers, however, will all be contained in a finite dimensional subset.

Theorem: Representer Theorem. Let W be a RKHS with PSD K and let G :
n

R 7→ R be any function. Then

min G(f(x1), . . . , f(xn)) = min G(f(x1), . . . , f(xn))
f∈W,‖f‖≤λ ∈ ¯f Wn, ‖f‖≤λ

= min G(gα(x1), . . . , gα(xn)),
α∈Rn, α⊤IKα≤λ2

where
n

W̄n = {f ∈ W |f(·) = gα(·) =
∑

αiK(xi,
i=1

·)}

and IKij = K(xi, xj).

Proof. ¯Since Wn is a linear subspace of W , we can decompose any f W uniquely as
¯ ⊥ ¯∈ ¯ ⊥

∈
f = f + f with f Wn and f ∈ W̄⊥

n . The Pythagorean theorem then gives

‖f‖2W = ‖f̄‖2W + ‖f⊥‖2W
¯Moreover, since K(xi, ·) ∈ Wn,

f⊥(xi) = 〈f⊥,K(xi, ·)〉W = 0

¯So f(xi) = f(xi) and

G(f(x1 ¯ ¯), . . . , f(xn)) = G(f(x1), . . . , f(xn)).

Because f⊥ does not contribute to G, we can remove it from the constraint:

¯ ¯min G(f(x1), . . . , f(xn)) = min G(f(x1), . . . , f(xn)).
¯f∈W,‖f‖2+‖f⊥‖2≤λ2 f∈ ‖ ¯W, f‖2≤λ2
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¯Restricting to f ∈ Wn now does not change the minimum, which gives us the first equality.
For the second, we need to show that ‖gα‖W ≤ λ is equivalent to α⊤IKα ≤ λ2.

‖gα‖2 = 〈gα, gα
n

〉
n

= 〈
∑

αiK(xi,
i=1

·),

n

∑

αjK(xj ,
=1

·)
j

〉

=
∑

αiαj〈K(xi, (
,j=1

·),K xj ,
i

·)〉

n

=
∑

αiαjK(xi, xj)
i,j=1

= α⊤IKα

We’ve reduced the infinite dimensional problem to a minimization over α ∈ n
R . This

works because we’re only interested in G evaluated at a finite set of points. The matrix
IK here is a Gram matrix, though we will not not use that. IK should be a measure of the
similarity of the points xi. For example, we could have W = {〈x, ·〉

Rd , x ∈ d
R } with K(x, y

the usual inner product K(x, y) = 〈x, y〉Rd .
ˆ ˆWe’ve shown that f only depends on K through IK, but does Rn,ϕ depend on K(x, y)

for x, y ∈/ {xi}? It turns out not to:

n n n
1

R̂n,ϕ =
∑ 1

ϕ(−Yigα(xi)) =
∑

ϕ(−Yi

∑

αjK(xj , xi)).
n n

i=1 i=1 j=1

The last expression only involves IK. This makes it easy to encode all the knowledge about
our problem that we need. The hard classifier is

n

ˆ ˆh(x) = sign(f(x)) = sign(gα̂(x)) = sign(
∑

α̂jK(xj, x))
j=1

If we are given a new point xn+1, we need to compute a new column for IK. Note that
xn+1 must be in some way comparable or similar to the previous {xi} for the whole idea of
extrapolating from data to make sense.

The expensive part of SVMs is calculating the n × n matrix IK. In some applications,
IK may be sparse; this is faster, but still not as fast as deep learning. The minimization
over the ellipsoid α⊤IKα requires quadratic programming, which is also relatively slow. In
practice, it’s easier to solve the Lagrangian form of the problem

n
1

α̂ = argmin
∑

ϕ(−Yigα(x
′ ⊤

i)) + λ α IKα
α∈Rn n

i=1

This formulation is equivalent to the constrained one. Note that λ and λ′ are different.
SVMs have few tuning parameters and so have less flexibility than other methods.
We now turn to analyzing the performance of SVM.
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Theorem: Excess Risk for SVM. Let ϕ be an L-Lipschitz convex surrogate and
ˆ ˆW a RKHS with PSD K such that maxx |K(x, x)| = kmax < ∞. Let hn,ϕ = sign fn,ϕ,

ˆwhere fn,ϕ is the empirical ϕ-risk minimizer over F = {f
ˆ ˆ ˆ

∈ W.‖f‖W ≤ λ} (that is,

Rn,ϕ(fn,ϕ) ≤ Rn,ϕ(f)∀f ∈ F). Suppose λ
√
kmax ≤ 1. Then

ˆR(hn,ϕ)−R∗ ≤ 2c

(
γ γγ kmax 2 log(2/δ)

inf (Rϕ(f)−R∗
ϕ)

)

+2c

(

8Lλ +
f∈

√

2L
F n

)

2c

(
√

n

)

with probability 1− δ. The constants c and γ are those from Zhang’s lemma. For the
hinge loss, c = 1

2
and γ = 1.

Proof. The first term comes from optimizing over a restricted set F instead of all classifiers.
The third term comes from applying the bounded difference inequality. These arise in
exactly the same way as they do for boosting, so we will omit the proof for those parts. For

the middle term, we need to show that Rn,ϕ(F) ≤ λ kmax

n
.

First, |f(x)| ≤ ‖f‖W
√
kmax ≤ λ

√
kmax ≤ 1 for all

√

f ∈ F , so we can use the contraction
inequality to replace Rn,ϕ(F) with Rn(F). Next we’ll expand f(xi) inside the Rademacher
complexity and bound inner products using Cauchy-Schwartz.

n
1

Rn(F) = sup E sup σif(xi)
x1,...,xn

[

f∈F

∣

∣

∣

n
i=1

∣

∣
]

∑

∣

∣

∣

n
1

= sup E

[

sup
∣

∣

∣

∑

σ

∣

i K(x

∣

〈 i, ·), f
n x1,...,xn f∈F

i=1

〉
∣

∣

]

n
1

∣

= sup E

∣

∣

[

sup

∣

∣

∣〈
∑

σiK(xi, ·), f

∣

n

∣

x1,...,xn f∈F i=1

〉
∣

∣

]

∣

λ

∣

∣ ∣

≤ sup

√

√

√

√E

[

n

‖
∑

σiK(x 2
i,

∣

n x1,...,xn i=1

·)‖W

]

Now,

n n n
2

E

[

‖
∑

σiK(xi, ·)‖W

]

= E



〈
∑

σiK(xi, ·),
∑

σjK(xj,
i=1 i=1 j=1

·)〉W



n



=
∑

〈K(x Ei, ·),K(xj , ·)〉 [σiσj]
i,j=1

n

=
i

∑

K(xi, xj)δij
,j=1

≤ nkmax

SoRn(F) ≤ λ kmax

n
and we are done with the new parts of the proof. The remainder follows

as with boosti

√

ng, using symmetrization, contraction, the bounded difference inequality, and
Zhang’s lemma.
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