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2.3 Projected Gradient Descent

In the original gradient descent formulation, we hope to optimize minx f(x) where nC C a d∈
f are convex, but we did not constrain the intermediate xk. Projected gradient descent will
incorporate this condition.

2.3.1 Projection onto Closed Convex Set

First we must establish that it is possible to always be able to keep xk in the convex set C.
One approach is to take the closest point π(xk) ∈ C.

Definition: Let C be a closed convex subset of IRd. Then ∀x ∈ IRd, let π(x) ∈ C be
the minimizer of

‖x− π(x)‖ = min x z
z∈C

‖ − ‖

where ‖ · ‖ denotes the Euclidean norm. Then π(x) is unique and,

〈π(x)− x, π(x) − z〉 ≤ 0 ∀ z ∈ C (2.1)

Proof. From the definition of π := π(x), we have ‖x− π‖2 ≤ ‖x− v‖2 for any v ∈ C. Fix
w ∈ C and define v = (1 − t)π + tw for t ∈ (0, 1]. Observe that since C is convex we have
v ∈ C so that

‖ − ‖2 ≤ ‖ − ‖2 2x π x v = ‖x− π − t(w − π)‖
Expanding the right-hand side yields

‖ 2 2 2x− π‖ ≤ ‖x− π‖ − 2t 〈x− π,w − π〉+ t2 ‖w − π‖

This is equivalent to
〈x− π,w − 〉 ≤ 2π t ‖w − π‖

Since this is valid for all t ∈ (0, 1), letting t → 0 yields (2.1).

Proof of Uniqueness. Assume π1, π2 ∈ C satisfy

〈π1 − x, π1 − z〉 ≤ 0 ∀ z ∈ C

〈π2 − x, π2 − z〉 ≤ 0 ∀ z ∈ C

Taking z = π2 in the first inequality and z = π1 in the second, we get

〈π1 − x, π1 − π2〉 ≤ 0

〈x− π2, π1 − π2〉 ≤ 0

Adding these two inequalities yields ‖π1 − π2‖2 ≤ 0 so that π1 = π2.
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2.3.2 Projected Gradient Descent

Algorithm 1 Projected Gradient Descent algorithm

Input: x1 ∈ C, positive sequence {ηs}s≥1

for s = 1 to k − 1 do
ys+1 = xs − ηsgs , gs ∈ ∂f(xs)
xs+1 = π(ys+1)

end for
k

1
return Either x̄ =

∑

xs or x◦ ∈ argmin f(x)
k xs= {x1,...,x1 ∈ k}

Theorem: Let C be a closed, nonempty convex subset of IRd such that diam(C) ≤ R.
Let f be a convex L-Lipschitz function on

R

C such that x∗ ∈ argminx f(x) exists.∈C
Then if ηs ≡ η =

L
√ then
k

LR LR
f(x̄)− f(x∗) ≤ √ and f(x̄◦)− f(x∗)

k
≤ √

k

Moreover, if ηs =
R√ , then ∃c > 0 such that

L s

LR LR
f(x̄)− f(x∗) ≤ c√ and f(x̄◦) f(x∗)

k
− ≤ c√

k

Proof. Again we will use the identity that 2a⊤b = ‖a‖2 + ‖b‖2 − ‖ 2a− b‖ .
By convexity, we have

f(xs)− f(x∗) ≤ gs
⊤(xs − x∗)

1
= (xs − ys+1)

⊤(xs
η

− x∗)

1
=

2η

[

‖ 2xs − ys+1‖ + ‖xs − x∗‖2 − ‖ys+1 − x∗‖2
]

Next,

‖ys+1 − x∗‖2 = ‖ 2ys+1 − xs+1‖ + ‖xs+1 − x∗‖2 + 2 〈ys+1

2

− xs+1, xs+1 − x∗〉
= ‖ys+1 − xs+1‖ + ‖ 2xs+1 − x∗‖ + 2 〈ys+1 − π(ys+1), π(ys+1)− x∗〉
≥ ‖xs+1 − x∗‖2

where we used that 〈x− π(x), π(x) − z〉 ≥ 0 ∀ z ∈ C, and x∗
2 2

∈ C. Also notice that
‖xs − 2y 2 2

s+1‖ = η ‖gs‖ ≤ η L since f is L-Lipschitz with respect to ‖·‖. Using this
we find

k k
1

k

∑ 1 1
( )− ( ∗) ≤

∑

2 2 + ∗ 2 ∗ 2f xs f x η L xs x xs+1 x
k 2η

s=1 s=1

[

‖ − ‖ − ‖ − ‖
]

ηL2 1 2 ηL2 R2

≤ + x
2 k

‖ 1 − x∗
2 η

‖ ≤ +
2 2ηk
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Minimizing over η we get L = R
2 =⇒ η = R√ , completing the proof

2 2η k L k

RL
f(x̄)− f(x∗) ≤ √

k

2

Moreover, the proof of the bound for f(
∑k

k xs)−f(x∗) is identical because x k x
s=

∥

∥

2

− ∗
2

∥

∥ ≤
R2 as well.

∥ ∥

2.3.3 Examples

Support Vector Machines
The SVM minimization as we have shown before is

n
1

min
n

∑

max (0, 1 Yifα(Xi))
α R

⊤

∈I n
≤ 2 i=1

−
α IKα C

where fα(Xi) = α⊤IKei =
∑n

=1 αjK(X ,j j Xi). For convenience, call gi(α) = max (0, 1 − Yifα(Xi)).

In this case executing the projection onto the ellipsoid {α : α⊤IKα ≤ C2} is not too hard,
but we do not know about C, R, or L. We must determine these we can know that our
bound is not exponential with respect to n. First we find L and start with the gradient of
gi(α):

∇gi(α) = 1I(1− Yifα(Xi) ≥ 0)YiIKei

ˆWith this we bound the gradient of the ϕ-risk Rn,ϕ(fα) =
1
n

n n

∑n
=1 gi(αi ).

∥

∥ ∂ 1 1
∥ R̂n,ϕ(fα)

∥

∥
∑

∥ =

∥

∥

∥ ∇gi(α)
∂α ∥

∥

n

∥

∥

i=1

∥

∥ ≤
∑

IKe
∥

∥ i
n 2

i=1

‖ ‖

by the triangle inequality and the fact that that 1I(1

∥

− Yifα(Xi) ≥ 0)Yi ≤ 1. We can now
use the properties of our kernel K. Notice that ‖IKei

1

2

‖ is the ℓ2 norm of the ith column so

‖IKei‖ n
2 =

(

∑

j=1K(Xj ,Xi)
2
)

. We also know that

K(Xj ,Xi)
2 = 〈K(X 2

j , ·),K(Xi, ·)〉 ≤ ‖K(Xj , ·)‖ KH ‖ (Xi, ·)‖H ≤ kmax

Combining all of these we get

1

∥ n n 2

∥ ∂ 1
∥ R̂n,ϕ(fα)

∥



≤ max



∑ ∑

∥

∥

 k2  = kmax

√
n = L

∥∂α ∥ n
i=1 j=1

To find R we try to evaluate diam{α⊤IKα ≤ C2} = 2 max
√
α

α⊤

⊤α. We can use the
IKα≤C2

condition to put bounds on the diameter

C2 2C≥ α⊤IKα ≥ λmin(IK)α⊤α =⇒ diam{α⊤IKα ≤ C2} ≤ √

λmin(IK)

We need to understand how small λmin can get. While it is true that these exist random
samples selected by an adversary that make λmin = 0, we will consider a random sample of
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i.i.d
X1, . . . ,Xn ∼ N (0, Id). This we can write these d-dimensional samples as a d× n matrix
X. We can rewrite the matrix IK with entries IKij = K(Xi,Xj) = 〈Xi,Xj〉IRd as a Wishart
matrix IK = X

⊤
X (in particular, 1

X
d

⊤
X is Wishart). Using results from random matrix

theory, if we take n, d → ∞ but hold n as a constant γ, then λ ( IK 2
min ) (

d
→ 1

√− γ) . Taking
d

an approximation since we cannot take n, d to infinity, we get

λmin(IK) ≃ d

(

n d
1− 2

√

d

)

≥
2

using the fact that d ≫ n. This means that λmin becoming too small is not a problem when
we model our samples as coming from multivariate Gaussians.

Now we turn our focus to the number of iterations k. Looking at our bound on the
excess risk

n
R̂n,ϕ(f ˆ

α◦

R
) ≤ min Rn,ϕ(fα) + C

√

kmax
α⊤IKα≤C2 kλmin(IK)

we notice that our all of the constants in our stochastic term can be computed given the
number of points and the kernel. Since statistical error is often √1 , to be generous we want

n

to have precision up to 1
n
to allow for fast rates in special cases. This gives us

n3k2 C2

k ≥ max

λmin(IK)

which is not bad since n is often not very big.
In [Bub15], the rates for many a wide rage of problems with various assumptions are

available. For example, if we assume strong convexity and Lipschitz we can get an exponen-
tial rate so k ∼ log n. If gradient is Lipschitz, then we get get 1

k
instead of √1 in the bound.

k

However, often times we are not optimizing over functions with these nice properties.

Boosting
We already know that ϕ is L-Lipschitz for boosting because we required it before.

Remember that our optimization problem is

n
1

min
∑

ϕ(−Yifα(Xi))
α RN n
|α
∈I
|1≤ i=11

where fα = N
j=1 αjfj and fj is the j

th weak classifier. Remember before we had some rate

like
√

logNc

∑

n
and we would hope to get some other rate that grows with logN since N can

be very large. Taking the gradient of the ϕ-loss in this case we find

N
1∇R̂n,ϕ(fα) =
∑

ϕ′(−Yifα(Xi))(−Yi)F (Xi)
n

i=1

where F (x) is the column vector [f1(x), . . . , fN (x)]⊤. Since |Yi| ≤ 1 and ϕ′ ≤ L, we can
bound the ℓ2 norm of the gradient as

∥
n

L
∥∇R̂
∥ n,ϕ(fα)

∥

∥

∥

2
≤

n

∥ ∥

∥

∥

∑

F (X
∥ i)
∥

i=1

∥

n

∥

L

∥

∥

≤
n

∑

)
i=

‖F (Xi

1

‖ ≤ L
√
N
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using triangle inequality and the fact that F (Xi) is a N -dimensional vector with each
component bounded in absolute value by 1.

Using the fact th√at the diameter of the ℓ1 ball is 2, R = 2 and the Lipschitz associated
with our ϕ-risk is L N where L is the Lipschitz constant for ϕ. Our stochastic term R√L

k

becomes 2L
√

N
k
. Imposing the same 1

n
error as before we find that k ∼ N2n, which is very

bad especially since we want logN .

2.4 Mirror Descent

Boosting is an example of when we want to do gradient descent on a non-Euclidean space,
in particular a ℓ1 space. While the dual of the ℓ2-norm is itself, the dual of the ℓ1 norm is
the ℓ or sup norm. We want this appear if we have an ℓ1 constraint. The reason for this∞
is not intuitive because we are taking about measures on the same space IRd, but when we
consider optimizations on other spaces we want a procedure that does is not indifferent to
the measure we use. Mirror descent accomplishes this.

2.4.1 Bregman Projections

Definition: If ‖·‖ is some norm on IRd, then ‖·‖ is its dual norm.∗

Example: If dual norm of the ℓp norm ‖·‖p is the ℓq norm ‖·‖q, then 1
p
+ 1

q
= 1. This is the

limiting case of Hölder’s inequality.
In general we can also refine our bounds on inner products in IRd to x⊤y ≤ ‖x‖ ‖y‖ if∗

we consider x to be the primal and y to be the dual. Thinking like this, gradients live in
the dual space, e.g. in gs

⊤(x − x∗), x− x∗ is in the primal space, so gs is in the dual. The
transpose of the vectors suggest that these vectors come from spaces with different measure,
even though all the vectors are in IRd.

Definition: Convex function Φ on a convex set D is said to be
(i) L-Lipschitz with respect to ‖·‖ if ‖g‖∗ ≤ L ∀ g ∈ ∂Φ(x) ∀x ∈ D

(ii) α-strongly convex with respect to ‖·‖ if

α
Φ(y) ≥ Φ(x) + g⊤(y − x) +

2
‖y − x‖2

for all x, y ∈ D and for g ∈ ∂f(x)

Example: If Φ is twice differentiable with Hessian H and ‖·‖ is the ℓ2 norm, then all
eig(H) ≥ α.

Definition (Bregman divergence): For a given convex function Φ on a convex set
D with x, y ∈ D, the Bregman divergence of y from x is defined as

DΦ(y, x) = Φ(y)− Φ(x)−∇Φ(x)⊤(y − x)
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This divergence is the error of the function Φ(y) from the linear approximation at x.
Also note that this quantity is not symmetric with respect to x and y. If Φ is convex then
DΦ(y, x) ≥ 0 because the Hessian is positive semi-definite. If Φ is α-strongly convex then
DΦ(y, x) ≥ α

2
‖y − x‖2 and if the quadratic approximation is good then this approximately

holds in equality and this divergence behaves like Euclidean norm.

Proposition: Given convex function Φ on D with x, y, z ∈ D

(∇Φ(x)−∇Φ(y))⊤ (x− z) = DΦ(x, y) +DΦ(z, x) −DΦ(z, y)

Proof. Looking at the right hand side

= Φ(x)− Φ(y)−∇Φ(y)⊤(x− y) + Φ(z)− Φ(x)−∇Φ(x)⊤(z − x)

−
[

Φ(z)− Φ(y)−∇Φ(y)⊤(z − y)
]

= ∇Φ(y)⊤(y − x+ z − y)−∇Φ(x)⊤(z − x)

= (∇Φ(x)−∇Φ(y))⊤ (x− z)

Definition (Bregman projection): Given x ∈ IRd, Φ a convex differentiable function
on D ⊂ D̄IRd and convex C ⊂ , the Bregman projection of x with respect to Φ is

πΦ(x) ∈ argminDφ(x, z)
z∈C
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