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Recall that in last lecture, we talked about prediction with expert advice. Remember
that l(ej , zt) means the loss of expert j at time t, where zt is one adversary’s move. In this
lecture, for simplexity we replace the notation zt and denote by zt the loss associated to all
experts at time t:

zt =



ℓ(e1, zt)


 ... ,

ℓ(eK , zt)



whereby for p ∈ ∆K , p

 

⊤zt =
K p ej=1 jℓ( j , zt). This gives an alternative definition of ft(p)

in last lecture. Actually it is easy to check ft(p) = p⊤zt, thus we can rewrite the theorem
for exponential weighting(EW

∑

) strategy as

n n

Rn ≤
∑

p⊤t zt − min p
p

t=1
∈∆k

∑ ⊤zt 2n logK,

t=1

≤
√

where the first inequality is Jensen inequality:

n n
∑

p⊤z zt
t=1

≥
∑

ℓ(pz, zt) .
t=1

We consider EW strategy for bounded convex losses. Without loss of generality, we
assume ℓ(p, z) ∈ [0, 1], for all (p, z) ∈ ∆K × Z, thus in notation here, we expect pt ∈ ∆K

and z K ¯
t ∈ [0, 1] . Indeed if ℓ(p, z) ∈ [m,M ] then one can work with a rescaled loss ℓ(a, z) =

ℓ(a,z)−m . Note that now we have bounded gradient on pt, since zt is bounded.M−m

2. FOLLOW THE PERTURBED LEADER (FPL)

In this section, we consider a different strategy, called Follow the Perturbed Leader.
At first, we introduce Follow the Leader strategy, and give an example to show that

Follow the Leader can be hazardous sometimes. At time t, assume that choose

t−1

pt = argmin
p∈∆K

∑

p⊤zs.
s=1

Note that the function to be optimized is linear in p, whereby the optimal solution should
be a vertex of the simplex. This method can be viewed as a greedy algorithm, however, it
might not be a good strategy.

Consider the following example. Let K = 2, z1 = (0, ε)⊤, z2 = (0, 1)⊤, z3 = (1, 0)⊤,
z4 = (0, 1)⊤ and so on (alternatively having (0, 1)⊤ and (1, 0)⊤ when t ≥ 2), where ε is small
enough. Then with Following the Leader Strategy, we have that p1 is arbitrary and in the
best case p1 = (1, 0)⊤, and p2 = (1, 0)⊤, p3 = (0, 1)⊤, p4 = (1, 0)⊤ and so on (alternatively
having (0, 1)⊤ and (1, 0)⊤ when t ≥ 2).
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In the above example, we have

n n
∑ n n

p⊤t zt min p⊤zt n 1 1 ,
p ∆k 2 2

t=1

− ≤ − − ≤
∈

∑

t=1

−

which gives raise to linear regret.
Now let’s consider FPL. FPL regularizes FL by adding a small amount of noise, which

can guarantee square root regret under oblivious adversary situation.

Algorithm 1 Follow the Perturbed Leader (FPL)

Input: Let ξ be a random variables uniformly drawn on [0, 1 ]K .
η

for t = 1 to n do

t−1

pt = argmin
p∈∆K

∑

s=1

(

p⊤zs + ξ
)

.

end for

We analyze this strategy in oblivious adversaries, which means the sequence zt is chosen
ahead of time, rather than adaptively given. The following theorem gives a bound for regret
of FPL:

Theorem: FPL with η = √1 yields expected regret:
kn

IEξ[Rn] ≤ 2
√
2nK .

Before proving the theorem, we introduce the so-called Be-The-Leader Lemma at first.

Lemma: (Be-The-Leader)
For all loss function ℓ(p, z), let

t

p∗t = arg min ℓ(p, zs) ,
p∈∆K

∑

s=1

then we have
n n
∑

ℓ(p∗t , zt)
t=1

≤
∑

ℓ(pn
∗ , zt)

t=1

Proof. The proof goes by induction on n. For n = 1, it is clearly true. From n to n+ 1, it
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follows from:

n+1 n
∑

ℓ(pt
∗, zt) =

∑

ℓ(p∗t , zt) + ℓ(pn
∗
+1, zn+1)

t=1 i=1
n

≤
∑

ℓ(p∗n, zt) + ℓ(p∗n+1, zn+1)
i=1
n

≤
∑

ℓ(p∗n+1, zt) + ℓ(p∗n+1, zn+1) ,
i=1

where the first inequality uses induction and the second inequality follows from the definition
of p∗n.

Proof of Theorem. Define
t

qt = argmin p⊤(ξ +
p∈∆K

∑

zs) .
s=1

Using the Be-The-Leader Lemma with
{

pT (ξ + z1) if t = 1
ℓ(p, zt) =

pT zt if t > 1 ,

we have
n n

q1
⊤ξ +

∑

qt
⊤zt ≤ min q⊤(ξ +

q
t=

∈∆K

1

∑

zt) ,
t=1

whereby for any q ∈ ∆K ,

n
∑

( 2
qt
⊤zt − q⊤zt

)

≤
(

q⊤ − q1
⊤
)

ξ ≤ ‖q 1

i

− q1
=1

‖ ‖ξ‖∞ ≤ ,
η

where the second inequality uses Hölder’s inequality and the third inequality is from the
fact that q and q1 are on the simplex and ξ is in the box.

Now let
t

qt = arg min p⊤
(

ξ + zt +
∑

zs
p∈∆K

s=1

)

and
t

pt = arg min p⊤ +
∈∆

(

ξ + 0
p K

∑

zs
s=1

)

.

Therefore,

n n

IE[Rn] ≤
∑

p⊤t zt
i

− min p⊤zt
p∈∆k

=1

∑

i=1
n
( )

n

≤
∑

qt
⊤zt − p∗T zt +

∑

IE[(pt t

i=1 =1

− q )⊤zt]
i

n
2≤ +

∑

IE[(pt − qt)
⊤zt] , (2.1)

η
i=1
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where p∗ = argminp∈∆K

∑n
p zt=1
⊤

t.
Now let

t−1

h(ξ) = zt
⊤
(

arg min p⊤[ξ +
p∈∆K

∑

zs] ,

s=1

)

then we have a easy observation that

IE[zt
⊤(pt − qt)] = IE[h(ξ)] − IE[h(ξ + zt)] .

Hence,

IE[zt
⊤(pt − q K K

t)] = η

∫

h(ξ)dξ − η

∫

h(ξ)dξ
ξ∈[0, 1 ]K ξ∈z +[0, 1 ]Ktη η

≤ ηK
∫

h(ξ)dξ
ξ∈[0, 1 ]K

η
\
{

z , 1 ]Kt+[0
η

}

≤ ηK
∫

1dξ
ξ∈[0, 1 ]K\

{

zt+[0, 1 ]K
η η

}

= IP (∃i ∈ [K], ξ(i) ≤ zt(i))

K

≤
∑

IP

(

Unif

(

1
[0, ]

)

≤ zt(i)
η

i=1

)

≤ ηKzt(i) ≤ ηK , (2.2)

where the first inequality is from the fact that h(ξ) ≥ 0, the second inequality uses
h(ξ) ≤ 1, the second equation is just geometry and the last inequality is due to zt(i) ≤ 1.

Combining (2.1) and (2.2) together, we have

2
IE[Rn] ≤ + ηKn .

η

In particular, with η =
√

2 , we have
Kn

IE[Rn] ≤ 2
√
2Kn ,

which completes the proof.
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