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on-line prediction

A repeated game between forecaster and environment.

At each round t,

the forecaster chooses an action t 2 {1, . . . , };
(actions are often called experts)

the environment chooses losses `t(1), . . . , `t(N) 2 [0, 1];

the forecaster su↵ers loss `t(It).

The goal is to minimize the regret

Rn =

 
Xn n

`t(It) � min

i
t

N
=1

X
`t(i)

t=1

!
.
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simplest example

Is it possible to make (1/n)Rn ! 0 for all loss assignments?

Let N = 2 and define, for all t = 1, . . . , n,

`t(1) =

⇢
0 if It = 2

1 if It = 1

and `t(2) = 1 � `t(1).

Then
Xn n n

`t(It) = n and min `
i=1 2

t=1

X
t(i)

,


t=1

2

so
1 1

Rnn
� .
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randomized prediction

Key to solution: randomization.

At time t, the forecaster chooses a probability distribution
pt�1

= (p
1,t�1

, . . . , pN,t�1

)

and chooses action i with probability pi ,t�1

.

Simplest model: all losses `s(i), i = 1, . . . ,N , s < t, are
observed: full information.
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Hannan and Blackwell

Hannan (1957) and Blackwell (1956) showed that the forecaster
has a strategy such that

1

 
Xn n

`t(It)n
� min

i
t

N
=1

X
`t(i)

t=1

!
! 0

almost surely for all strategies of the environment.
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basic ideas

expected loss of the forecaster:

N

`t(pt�1

) =

X
pi ,t (�1

`t i) = Et`t(It)
i=1

By martingale convergence,
 
Xn n

1

` ` 1 2

t(It) �
X

/
t(pn t�1

) = OP(n�
)

t=1 t=1

so it su�ces to study

1

n

 
Xn n

`t(pt ) min ` (i)�1

�
N

=1

X
t

i
t t=1

!

!

16



weighted average prediction

Idea: assign a higher probability to better-performing actions.
Vovk (1990), Littlestone and Warmuth (1989).

A popular choice is

exp

⇣
�⌘

Pt�1

=1

` (s s i)
pi ,t =�1

⌘

P = 1

N
=1

exp

⇣
�⌘

P i , . . . ,N .
t�1

=1

`s( )k s k

where ⌘ > 0. Then

⌘

1

Xn

n

 n

`t(pt�1

) � min

i
t=1

N

X
`t(i)

t=1

!
=

r
lnN
2n

with ⌘ =

p
8 lnN/n.

19



proof

tLet Li ,t =

P
s=1

`s(i) and

N

Wt =

X XN
wi ,t = e�⌘Li ,t

i=1 i=1

for t � 1, and W
0

= N . First observe that

Wn
ln e

W

XN
= ln

,

0

 
�⌘Li n

i=1

!
� lnN

� ln

✓
max e�⌘Li ,n

ln

i=1,...,N

◆
� N

= �⌘ min Li ,n
i=1,...,N

� lnN .
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proof

On the other hand, for each t = 1, . . . , n

Wt
PN

i=1

wi ,t 1

e�⌘`t(i)
ln = ln

�
Wt�1

PN

P
j=1

wj ,t�1

N
=1

w
P

i ,t�1

` (

� i t i) ⌘2
 ⌘ +N

8j=1

wj ,t�1

⌘2
= �⌘`t(pt�1

) +

8

by Hoe↵ding’s inequality.

Hoe↵ding (1963): if X 2 [0, 1],

lnEe�⌘ ⌘2X  �⌘EX +

8
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proof

for each t = 1, . . . , n

W 2

t ⌘
ln  �⌘`t(p ) +

W t
t�1

�1

8

Summing over t = 1, . . . , n,

W n
n ⌘

ln  �⌘
X 2

`t(pt 1

) + n .
W

0

�
8

t=1

Combining these, we get

Xn
lnN ⌘

`t(pt 1

)  min Li ,n + + n� i=1,...,N ⌘ 8

t=1
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lower bound

The upper bound is optimal: for all predictors,
Pn

=1

`t(Itp
� n

) mint iN `t
sup

=1

t(i)
1 .

n,N,`t(i) (n/2) lnN

P
�

Idea: choose `t(i) to be i.i.d. symmetric Bernoulli coin flips.

n

sup

 
Xn

`t(It)
t(i)

� min

` i
t=1

N

X
`t(i)

" t=1

!

n

� E
X

`t(It) � min

i
t=1

N

n

Xn

`t(i)
t=1

#

=

2

� minBi
iN

Where B
1

, . . . ,BN are independent Binomial (n, 1/2).
Use the central limit theorem.
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follow the perturbed leader

t�1

It = argmin
X

`s(i) + Zi ,t
i=1,...,N s=1

where the Zi ,t are random noise variables.

The original forecaster of Hannan (1957) is based on this idea.
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follow the perturbed leader

If the Zi ,t are i.i.d. uniform [0,
p

nN], then

1 N
Rnn

 2

r
+ Op(n�1/2

) .
n

If the Z z
i ,t are i.i.d. with density (⌘/2)e�⌘| |, then for

⌘ ⇡
p
logN/n,

1 logN
R 1/2

n  c
r

+ Op(n�
) .

n n

Kalai and Vempala (2003).
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combinatorial experts

Often the class of experts is very large but has some combinatorial
structure. Can the structure be exploited?

path planning. At each time
instance, the forecaster chooses a
path in a graph between two
fixed nodes. Each edge has an
associated loss. Loss of a path is
the sum of the losses over the
edges in the path.

N is huge!!!

32
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assignments: learning permutations

Given a complete
bipartite graph
Km,m, the
forecaster chooses a
perfect matching.
The loss is the sum
of the losses over
the edges.

Helmbold and Warmuth (2007): full information case.
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spanning trees

The forecaster chooses a
spanning tree in the complete
graph Km. The cost is the sum
of the losses over the edges.
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combinatorial experts

dFormally, the class of experts is a set S ⇢ {0, 1} of cardinality
|S| = N .

t 2 RdAt each time , a loss is assigned to each component: `t .

Loss of expert v 2 S is `t(v) = `>t v .

Forecaster chooses It 2 S.

The goal is to control the regret

Xn Xn

`t(It) � min `t(k) .
k=1,...,N

t=1 t=1
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computing the exponentially weighted average forecaster

One needs to draw a random element of S with distribution
proportional to

wt(v) = exp

� t

�⌘ Lt(v)
�
= exp

 �1

�⌘
X

`>t v .
s=1

!

t

exp

j

Yd
=

=1

 �1

�⌘
X

`t,jvj
s=1

!
.

36



computing the exponentially weighted average forecaster

path planning: Sampling may be done by dynamic programming.

assignments: Sum of weights (partition function) is the permanent
of a non-negative matrix. Sampling may be done by a FPAS of
Jerrum, Sinclair, and Vigoda (2004).

spanning trees: Propp and Wilson (1998) define an exact sampling
algorithm. Expected running time is the average hitting time of
the Markov chain defined by the edge weights wt(v).
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computing the follow-the-perturbed leader forecaster

In general, much easier. One only needs to solve a linear
optimization problem over S. This may be hard but it is well
understood.

In our examples it becomes either a shortest path problem, or an
assignment problem, or a minimum spanning tree problem.
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follow the leader: random walk perturbation

Suppose N experts, no structure. Define

t

It = argmin (`i ,s 1

+ Xs)
i=1,...,N

X
�

s=1

where the Xs are either i.i.d. normal or ±1 coinflips.

This is like follow-the-perturbed-leader but with random walk
tperturbation: s=1

Xt .

Advantage: fo

P

recaster rarely changes actions!
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follow the leader: random walk perturbation

If Rn is the regret and Cn is the number of times It 6= It�1

, then

ERn  2ECn  8

p
2n logN + 16 log n + 16 .

Devroye, Lugosi, and Neu (2015).

Key tool: number of leader changes in N independent random
walks with drift.
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follow the leader: random walk perturbation

This also works in the “combinatorial” setting: just add an
independent N(0, d) at each time to every component.

ERn = Oe(B3/2
p

n log d)

and
ECn = O(B

p
n log d) ,

where B = maxv2S kvk
1

.
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why exponentially weighted averages?

May be adapted to many di↵erent variants of the problem,
including bandits, tracking, etc.
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multi-armed bandits

The forecaster only observes `t(It) but not `t(i) for i 6= It .

Herbert Robbins (1952).
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multi-armed bandits

Trick: estimate `t(i) by

è `t(It)
t(i

I =i
) =

{ t }
pIt ,t�1

This is an unbiased estimate:

e XN `t(j)Et`t(i) = pj ,t 1

{j=i}
= `t(i)�

jj ,
=1

p t�1

Use the estimated losses to define exponential weights and mix
with uniform (Auer, Cesa-Bianchi, Freund, and Schapire, 2002):

⇣
�

Pt
exp ⌘ �1 ` ( )

P ⇣ s=1

pi ,t 1 � �
es i

1

= ( )� N
k=1

exp

⌘
�

�⌘
P +

t�1

s=1

`s(k)
⌘

N
exploration

e
| {z }

exploitation

|{z}
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multi-armed bandits

Xn
1

E
 

`t(pt 1

) � min

Xn

`t(i)

!
= O

 r
N lnN

!
,

n � i
t=1

N
t=1

n
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multi-armed bandits

Lower bound:

n
1 N

sup E
 
Xn

`t(pt 1

) � min

X
`t(i) ,

`t(i) n � i N
=1


=1

!
� C

r

n
t t

Dependence on N is not logarithmic anymore!

Audibert and Bubeck (2009) constructed a forecaster with

n n
1 N

maxE `t(pti �1

) `t(i) = O ,
N n

 
�

t=1 t=1

!  r

n

!
X X
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calibration

Sequential probability assignment.

A binary sequence x
1

, x
2

, . . . is revealed one by one.

After observing x
1

, . . . , xt�1

, the forecaster issues prediction
It 2 {0, 1, . . . ,N}.
Meaning: “chance of rain is It/N”.

Forecast is calibrated if
��P� n

� t=1

xt

�
{It=i}Pn

t=1

{It=i}
�

i
N

����� 
1

2N
+ o(1)

whenever lim supn(1/n)
Pn

t=1

0{It=i > .}

Is there a forecaster that is calibrated for all possible sequences?
NO. (Dawid, 1985).
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randomized calibration

However, if the forecaster is allowed to randomize then it is
possible! (Foster and Vohra, 1997).

This can be achieved by a simple modification of any regret
minimization procedure.

Set of actions (experts): {0, 1, . . . ,N}.
At time t, assign loss `t(i) = (xt � i/N)

2 to action i .

One can now define a forecaster. Minimizing regret is not
su�cient.
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internal regret

Recall that the (expected) regret is

Xn

`t(pt

Xn n

1

) � min `t(i) = max� i i
t=1 t=1

X
pj ,t (`t(j) � `t(i))

t=1

X

j

The internal regret is defined by

n

max

X
pj ,t (`t(j) � `t(i))

i ,j
t=1

pj ,t (`t(j) � `t(i)) = Et `{It=j (} t(j) � `t(i))

is the expected regret of having taken action j instead of action i .
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internal regret and calibration

By guaranteeing small internal regret, one obtains a calibrated
forecaster.

This can be achieved by an exponentially weighted average
forecaster defined over N2 actions.

Can be extended even for calibration with checking rules.
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prediction with partial monitoring

For each round t = 1, . . . , n,

the environment chooses the next outcome Jt 2 {1, . . . ,M}
without revealing it;

the forecaster chooses a probability distribution pt and�1

draws an action It 2 {1, . . . ,N} according to pt�1

;

the forecaster incurs loss `(It , Jt) and each action i incurs loss
`(i , Jt). None of these values is revealed to the forecaster;

the feedback h(It , Jt) is revealed to the forecaster.

H = [h(i , j)]N⇥M is the feedback matrix.

L = [`(i , j)]N⇥M is the loss matrix.
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examples

Dynamic pricing. Here M = N , and L = [`(i , j)]N⇥N where

(j )

i j
� i {ij + c

( , ) =

} {i>j
`

}
.

N

and h(i , j) = {i>j or}

h(i , j) = a i j + b i>j , i , j = 1, . . . ,N .{  } { }

Multi-armed bandit problem. The only information the forecaster
receives is his own loss: H = L.
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examples

Apple tasting. = = 2.

L =


0 1

1 0

�

H =


a a
b c

�
.

The predictor only receives feedback when he chooses the second
action.
Label e�cient prediction. N = 3, M = 2.

L =

2
1 1

4
0 1

1 0

3

5

H =

2
a b
c c

3

.

N M

4
c c

5
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a general predictor

A forecaster first proposed by Piccolboni and Schindelhauer (2001).
Crucial assumption: H can be encoded such that there exists an
N ⇥ N matrix K = [k(i , j)]N⇥N such that

L = K · H .

Thus,

`(i , j) =
XN

k(i , l)h(l , j) .
l=1

Then we may estimate the losses by

è k(i , It)h(It , Jt)
(i , Jt) = pIt ,t

.
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a general predictor

Observe

e XN k(i , k)h(k, Jt)Et`(i , Jt) = pk,t�1

k=1

pk,t�1

k
k

XN
= (i , k)h(k, Jt) = `(i , Jt) ,

=1

è
(i , Jt) is an unbiased estimate of `(i , Jt).
Let

e�⌘Li ,t�1 �
pi ,t�1

= (1 � �)
e

P +

N
=1

e�⌘Lek,t�1 N
k

where Li ,t =

Pt
=1

`(i , Jt).e
s

e
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performance bound

With probability at least 1 � �,

1

Xn
1

`(It , Jt)n
� min

i=1,...,N
t=1

�

Xn

`(i , Jt)n
t=1

 Cn 1/3N2/3
p
ln(N/�) .

where C depends on K . (Cesa-Bianchi, Lugosi, Stoltz (2006))

Hannan consistency is achieved with rate O(n�1/3
) whenever

L = K · H .

This solves the dynamic pricing problem.

Bartók, Pál, and Szepesvári (2010): if M = 2, only possible rates
are n�1/2, n�1/3, 1
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imperfect monitoring: a general framework

S is a finite set of signals.

Feedback matrix: H : {1, . . . ,N} ⇥ {1, . . . ,M} ! P(S).

For each round t = 1, 2 . . . , n,

the environment chooses the next outcome Jt 2 {1, . . . ,M}
without revealing it;

the forecaster chooses pt�1

and draws an action
It 2 {1, . . . ,N} according to it;

the forecaster receives loss `(It , Jt) and each action i su↵ers
loss `(i , Jt), none of these values is revealed to the forecaster;

a feedback st drawn at random according to H(It , Jt) is
revealed to the forecaster.
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target

Define
`(p, q) =

X
piqj`(i , j)

i ,j

H(·, q) = (H(1, q), . . . ,H(N, q))

where H(i , q) = j qjH(i , j) .

Denote by F the set

P

of those � that can be written as H(·, q) for
some q.

F is the set of “observable” vectors of signal distributions �.
The key quantity is

⇢(p,�) = max `(p, q)
q :H(·,q)=�

⇢ is convex in p and concave in �.
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rustichini’s theorem

The value of the base one-shot game is

minmax `(p, q) = min max ⇢(p,�)

p q p
�2F

If qn is the empirical distribution of J
1

, . . . , Jn, even with the
knowledge of H(·, qn) we cannot hope to do better than
minp ⇢(p,H(·, qn)).

Rustichini (1999) proved that there exists a strategy such that for
all strategies of the opponent, almost surely,

lim sup

0

@1

X
`(It , Jt) � min ⇢ (p,H(

n n!1 p
·, qn))

t=1,...,n

1

A  0
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rustichini’s theorem

Rustichini’s proof relies on an approachability theorem for a
continuum of types (Mertens, Sorin, and Zamir, 1994).

It is non-constructive.

It does not imply any convergence rate.

Lugosi, Mannor, and Stoltz (2008) construct e�ciently computable
strategies that guarantee fast rates of convergence.
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combinatorial bandits

The class of actions is a set S ⇢ {0 d, 1} of cardinality |S| = N .

At each time t d, a loss is assigned to each component: `t 2 R .

Loss of expert v 2 S is `t(v) = `>t v .

Forecaster chooses It 2 S.

The goal is to control the regret

Xn n

`t(It) � min

k=1,...,N
t=1

X
`t(k) .

t=1
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combinatorial bandits

Three models.

(Full information.) All d components of the loss vector are
observed.

(Semi-bandit.) Only the components corresponding to the chosen
object are observed.

(Bandit.) Only the total loss of the chosen object is observed.

Challenge: Is O(n�1/2poly(d)) regret achievable for the
semi-bandit and bandit problems?

77



combinatorial prediction game

Adversary

Player
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combinatorial prediction game

Adversary

Player
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combinatorial prediction game

Adversary

Player
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combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7
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combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

loss su↵ered: `
2

+ `
7

+ . . . + `d
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combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

<
8

Full Info: `
1

, `
2

, . . . , `d
Feedback: :

loss su↵ered: `
2

+ `
7

+ . . . + `d
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combinatorial prediction game

Adversary

Player

`
2

`
6

`d�1

`
1

4

`
5

`
9

`d�2

`d`
3

`
8

`
7

`

< n d
b ck:

8
Full I fo: `

1

, `
2

, . . . , `
Feed a : Semi-Bandit: `

2

, `
7

, . . . , `d
Bandit: `

2

+ `
7

+ . . . + `d

loss su↵ered: `
2

+ `
7

+ . . . + `d
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notation

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

`
2

`
6

`d�1

`
1

`
4

`
5

`
9

`d�2

`d`
3

`
8

`
7

S ⇢ {0, 1}d

`t 2 Rd
+

Vt 2 S T, loss su↵ered: `t Vt

regret:
n

R E
X n

TV � E
X

T
n = `t t min `t u

u
t=1

2S
t=1

Tloss assumption: `t v 1 for all v and t = 1, . . . , n.| |  2 S
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weighted average forecaster

At time t assign a weight wt,i to each i = 1, . . . , d .

The weight of each vk 2 S is

w t(k) = wt,i .
i :vk

Y

(i)=1

Let qt�1

(k) = w t�1

(k N
)/ k=1

w t�1

(k).

At each time t, draw Kt from

P

the distribution

pt�1

(k) = (1 � �)qt k�1

( ) + �µ(k)

where µ is a fixed distribution on S and � > 0. Here

wt,i = exp �⌘ Lt,i

where Lt,i = `
1,i + + `t,i and

�

`t,i is a

�

n estimated loss.

e

e e · · · e e
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loss estimates

Dani, Hayes, and Kakade (2008).
Define the scaled incidence vector

X t = `t(Kt)V Kt

where Kt is distributed according to pt�1

.

Let Pt�1

= E
⇥
V Kt V> be theKt

d ⇥ d correlation matrix.
Hence

Pt 1

⇤

� (i , j) =
k : vk(i

X
pt�1

(k) .
)=vk(j)=1

Similarly, let Qt�1

and M be the correlation matrices of E V V>

when V has law, qt�1

and µ. Then

⇥ ⇤

Pt�1

(i , j) = (1 � �)Qt�1

(i , j) + �M(i , j) .

The vector of loss estimates is defined by

èt = P+

t�1

X t

where P+

t�1

is the pseudo-inverse of Pt�1

.
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key properties

M M+v = v for all v 2 S.

Qt�1

is positive semidefinite for every t.
Pt 1

P+ r at 1

v = v fo ll t v� and� 2 S.

By definition,
Et X t = Pt�1

`t

and therefore
Et èt = P+

t�1

Et X t = `t

An unbiased estimate!
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performance bound

The regret of the forecaster satisfies

1

✓
ln

ELb
2B2 d N

n � min Ln(k) 2 + 1 .
n k=1,...,N

◆


s✓

d�min(M)

◆

n

where
T�min(M) = min x Mx > 0

x2span(S):kxk=1

is the smallest “relevant” eigenvalue of M . (Cesa-Bianchi and
Lugosi, 2009.)

Large �min(M) is needed to make sure no `t,i is too large.|e |
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performance bound

Other bounds:

B
p

d lnN/n (Dani, Hayes, and Kakade). No condition on S.
Sampling is over a barycentric spanner.

d
p

(✓ ln n)/n (Abernethy, Hazan, and Rakhlin). Computationally
e�cient.
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eigenvalue bounds

�min(M) = min E(V , x)2 .
x2span(S):kxk=1

where V has distribution µ over S.

In many cases it su�ces to take µ uniform.
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multitask bandit problem

The decision maker acts in m games in parallel.
In each game, the decision maker selects one of R possible actions.
After selecting the m actions, the sum of the losses is observed.

1

�min =

R

maxE Ln � Ln(k) lnR .
k

 2m
p
3nR

The price of only obs

h
b

erving the su

i

m of losses is a factor of m.

Generating a random joint action can be done in polynomial time.
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assignments

Perfect matchings of Km,m.
At each time one of the N = m! perfect matchings of Km,m is
selected.

1

�min(M) =

m � 1

maxE Ln � Ln(k)  2m 3n ln(m!) .
k

Only a factor of m

h

w

b

orse than n

i

aive full-i

p

nformation bound.
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spanning trees

In a network of m nodes, the cost of communication between two
nodes joined by edge e is `t(e) at time t. At each time a minimal
connected subnetwork (a spanning tree) is selected. The goal is to
minimize the total cost. N = mm�2.

1

�min(M) =

1

O
m

�
✓

m2

◆
.

The entries of M are

2

P{Vi = 1}=
m

P
�

3

Vi = 1, Vj = 1

 
= if

m2

i ⇠ j

4

P Vi = 1, Vj = 1 = if .
2

i 6⇠ j
m

�  
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stars

At each time a central node of a network of m nodes is selected.
Cost is the total cost of the edges adjacent to the node.

1

�min � 1 � O
✓

m

◆
.
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cut sets

A balanced cut in K
2m is the collection of all edges between a set

of m vertices and its comp�lement. Each balanced cut has m2

2medges and there are N = m

�
balanced cuts.

1 1

�min(M) = � O .
4

✓

m2

◆

Choosing from the exponentially weighted average distribution is
equivalent to sampling from ferromagnetic Ising model. FPAS by
Randall and Wilson (1999).
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hamiltonian cycles

A Hamiltonian cycle in Km is a cycle that visits each vertex exactly
once and returns to the starting vertex. N = (m � 1)!

2

�min �
m

E�cient computation is hopeless.
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sampling paths

In all these examples µ is uniform over S.

For path planning it does not always work.

What is the optimal choice of µ?
What is the optimal way of exploration?
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minimax regret

Rn = inf max sup Rnstrategy S⇢{0,1}d adversary

Theorem

Let n � d 2. In the full information and semi-bandit games, we
have

0.008 d
p

n  Rn  d
p
2n,

and in the bandit game,

0.01 d 3/2pn  Rn  2 d 5/2
p
2n.
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proof

upper bounds:

D = [0,+1)

d , F (x) = 1

d
og⌘ i=1

xi l xi works for full
information but it is only opti

P

mal up to a logarithmic factor in the
semi-bandit case.
in the bandit case it does not work at all! Exponentially weighted
average forecaster is used.

lower bounds:

careful construction of randomly chosen set S in each case.
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a general strategy

Let D dbe a convex subset of R with nonempty interior int(D).
A function F : D ! R is Legendre if

• F is strictly convex and admits continuous first partial
derivatives on int(D),

• For u 2 @D, and v 2 int(D), we have

lim (u � v T
) rF

�
(1 � s)u + sv = +

s!0,s>0

1.

The Bregman divergence DF : D ⇥ int(

�

D) associated to a
Legendre function F is

DF (u T, v) = F (u) � F (v) � (u � v) rF (v).
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CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on D � Conv(S)

Conv(S)

D

�(S)

pt

wt

w 0
t+1

wt+1

pt+1

(1) wt
0
+1

2 D :

rF (w 0
+1

) = rF ( )t wt � `˜t

(2) wt+1

2 argmin DF (w ,wt
0
+1

)

w2Conv(S)

(3) pt+1

2 �(S) : wt+1

= EV⇠pt+1

V
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General regret bound for CLEB

Theorem

If F admits a Hessian r2F always invertible then,

n

Rn / diam T̃ 2

�1

˜DF (S) + E
X

`t
=1

⇣
r F (wt)

t

⌘
`t .
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Di↵erent instances of CLEB: LinExp (Entropy Function)

D 1
Pd

= [0,+ )

d , F (x) = 1

⌘ i=1

xi log xi

8
>><

Full Info: Exponentially weighted average

>>: Semi-Bandit=Bandit: Exp3
Auer et al. [2002]

8
>>>

Full Info: Component Hedge

>>>
> Koolen, Warmuth and Kivinen [2010]
><

>>
Semi-Bandit: MW

>> Kale, Reyzin and Schapire [2010]

Bandit: new algorithm

>>>>:
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Di↵erent instances of CLEB: LinINF (Exchangeable
Hessian)

D = [0,+1)

d , F (x) =
Pd

i=1

R xi  1

( )

0

� s ds

INF, Audibert and Bubeck [2009]

⇢
 (x) = exp(⌘x) : LinExp
 (x) = (�⌘x)�q, q > 1 : LinPoly
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Di↵erent instances of CLEB: Follow the regularized leader

D = Conv(S), then

wt+1

2 argmin

 
Xt

T̃`s w + F (w)

w2D s=1

!

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]
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