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3. STOCHASTIC BANDITS

3.1 Setup

The stochastic multi-armed bandit is a classical model for decision making and is defined
as follows:

There are K arms(different actions). Iteratively, a decision maker chooses an arm k ∈
{1, . . . ,K}, yielding a sequence XK,1, . . . ,XK,t, . . ., which are i.i.d random variables with
mean µk. Define µ∗ = maxj µj or ∗ ∈ argmax. A policy π is a sequence {πt}t≥1, which
indicates which arm to be pulled at time t. πt ∈ {1, . . . ,K} and it depends only on the
observations strictly interior to t. The regret is then defined as:
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∑
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nwhere ∆k = µ∗ − µk and Tk(n) =
∑

t=1 1I(πt = k) is the number of time when arm k was
pulled.

3.2 Warm Up: Full Info Case
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time t after choosing πt. So in each iteration, a normal idea is to choose
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Assume from now on that all random variable Xk,t are subGaussian with variance proxy
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σ2, which means IE[eux
u σ

] ≤ e 2 for all u ∈ IR. For example, N(0, σ2) is subGaussian with

Xk,s
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variance proxy σ2 and any bounded random variable X ∈ [a, b] is subGaussian with variance
proxy (b− a)2/4 by Hoeffding’s Lemma.

Therefore,
Rn = ∆IE[T2(n)] , (3.1)

where ∆ = µ1 − µ2. Besides,

n
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t=2
n

= 1 +
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¯ ¯1I(X2,t −X1,t − (µ2 − µ1) ≥ ∆) .
t=2

¯ ¯It is easy to check that (X2,t−X1,t)−(µ2−µ1) is centered subGaussian with variance proxy
2σ2, whereby

2

¯ ¯ − t∆

IE[1I(X 2
2,t > X1,t)] ≤ e 4σ

by a simple Chernoff Bound. Therefore,

∞
2

Rn ≤ ∆(1 +
∑ 4σ2

− t∆

e 24σ ) ≤ ∆+ , (3.2)
∆

t=0

whereby the benchmark is
4σ2

Rn ≤ ∆+ .
∆

3.3 Upper Confidence Bound (UCB)

Without loss of generality, from now on we assume σ = 1. A trivial idea is that after s
pulls on arm k, we use µ̂k,s = 1 ∑

j∈{pulls of k}XK,j and choose the one with largest µ̂k,s.s
The problem of this trivial policy is that for some arm, we might try it for only limited
times, which give a bad average and then we never try it again. In order to overcome this
limitation, a good idea is to choose the arm with highest upper bound estimate on the mean
of each arm at some probability lever. Note that the arm with less tries would have a large
deviations from its mean. This is called Upper Confidence Bound policy.
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Algorithm 1 Upper Confidence Bound (UCB)

for t = 1 to K do

πt = t
end for

for t = K + 1 to n do

t−1

Tk(t) =
∑

1I(πt = k)
s=1

(number of time we have pull arm k before time t)

1
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∑
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Tk(t) s=1

log t)
πt ∈ argmax

{

2 (
µ̂k,t + 2

k∈[K]

√

Tk(t)

}

,

end for

Theorem: The UCB policy has regret

K
∑ log n π2
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∆k 3
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Proof. From now on we fix k such that ∆k > 0. Then

n
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t=
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Note that for t > K,
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And from a union bound, we have
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2 log t 2 log tThus IP(µk > µ̂k t + 2
k

) ≤ 1
, 3 and similarly we have IP(µ∗ > µ̂∗,t + 2 ) ≤ 1 ,T (t) t T 3

∗(t) t

whereby
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where s is the counter of pulling arm k. Therefore we have

K

Rn =
∑ ∑ π2 8 log n

∆kIE[Tk(n)] ≤ ∆k(1 + + ) ,
3 ∆2

k k,∆k
k=1 >0

which furnishes the proof.

Consider the case K = 2 at first, then from the theorem above we know Rn ∼ logn ,∆
which is consistent with intuition that when the difference of two arm is small, it is hard to
distinguish which to choose. On the other hand, it always hold that Rn ≤ n∆. Combining

logn log(n∆2)these two results, we have Rn ≤ ∧ n∆, whereby Rn ≤ up to a constant.∆ ∆
Actually it turns out to be the optimal bound. When K ≥ 3, we can similarly get the

log(n∆2)
result that Rn ≤

∑

k

k k
. This, however, is not the optimal bound. The optimal bound∆

should be
∑ log(n/H)

k k
, which includes the harmonic sum and H = 1 . See [Lat15].∆

∑

k ∆2

k

3.4 Bounded Regret

From above we know UCB policy can give regret that increases with at most rate log n with
n. In this section we would consider whether it is possible to have bounded regret. Actually
it turns out that if there is a known separator between the expected reward of optimal arm
and other arms, there is a bounded regret policy.

We would only consider the case when K = 2 here. Without loss of generality, we
assume µ1 =

∆ and µ ∆
2 = − , then there is a natural separator 0.2 2
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Algorithm 2 Bounded Regret Policy (BRP)

π1 = 1 and π2 = 2
for t = 3 to n do

if maxk µ̂k,t > 0 then

then πt = argmaxk µ̂k,t

else

πt = 1, πt+1 = 2
end if

end for

Theorem: BRP has regret
16

Rn ≤ ∆+ .
∆

Proof.

IP(πt = 2) = IP(µ̂2,t > 0, πt = 2) + IP(µ̂2,t ≤ 0, πt = 2)

Note that

n n
∑

IP(µ̂2,t > 0, πt = 2) ≤ IE 1I(µ̂2,t > 0, πt = 2)
t=3
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n
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8
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8
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where s is the counter of pulling arm 2 and the third inequality is a Chernoff bound.
Similarly,

n n
∑

IP(µ̂2,t ≤ 0, πt = 2) =
∑

IP(µ̂1,t ≤ 0, πt−1 = 1)
t=3 t=3

8
≤ ,

∆2

Combining these two inequality, we have

16
Rn ≤ ∆(1 + ) ,

∆2
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